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Résumé

Cette thèse est la première mesure de spectroscopie des fluctuations d’intensité (SFI)

de la dynamique d’une transition de type ordre-désordre dans un alliage binaire,

utilisant des rayons X cohérents. Des faisceaux intenses de rayons X cohérents de

quelques µm de diamètre sont maintenant produits en filtrant spatialement et en

fréquence des rayons X émis par une source synchrotron de troisième génération. Des

patrons de diffraction tacheté de la surstructure (100) du Cu3Au ont été mesurés avec

un détecteur bi-dimensionel de type CCD. Pour mesurer les fluctuations temporelles

et spatiales du facteur de structure, la résolution spatiale et la réponse du détecteur

furent mesurées.

Nous avons développé une technique d’application générale, basée sur une com-

paraison de la moyenne, variance et corrélation spatiale du signal avec des fluctuations

d’intensité suivant une loi de Poisson. Les corrélations spatiales du signal réduisent les

fluctuations du signal détecté par rapport au bruit de Poisson prévu. Cette technique

permet de mesurer la fonction de résolution et l’efficacité quantique du détecteur. La

largeur de la fonction d’autocorrélation spatiale des patrons de diffraction tachetés

est en accord quantitatif avec la largeur d’un patron de diffraction de Fraunhofer des

trous, élargi par la fonction de résolution du CCD. Le contraste du patron tacheté

est plus faible que prévu. La grandeur caractéristique des taches et leur contraste

dépendent des propriétés optiques du faisceau et de la taille du trou utilisé comme

prévu.

Nous avons mesuré des patrons tachetés après une trempe de l’état désordonné fcc à

l’état ordonné L12. Les taches dominantes apparaissent rapidement après la trempe,

mais reste fixe dans l’espace réciproque. La croissance des domaines est mesurée

par un accroissement de l’intensité moyenne et un rétrécissement de la largeur du

pic. Cette dynamique est en accord avec des simulations numériques du modèle A.

L’amplitude des fluctuations est faible et leur durée est très longue. Nous avons

démontré que la SFI est réalisable dans une nouvelle bande d’énergie. La SFI est un

nouvel outil pour l’étude des phénomènes hors d’équilibre dans les solides.

x



Abstract

We extended Intensity Fluctuation Spectroscopy (IFS) to atomic scale fluctuations

using coherent X-rays. Intense beams of coherent X-rays, with diameters of a few µm,

are now easily produced by spatial filtering of monochromatic X-rays generated from

synchrotron radiation insertion devices. This thesis is the first X-ray IFS measurement

on the non-equilibrium dynamics of an order-disorder phase transition in a binary

alloy. Speckle patterns of Cu3Au (100) were measured with a two-dimensional Charge-

Coupled Device detector. To quantify the spatial and temporal fluctuations of the

speckle pattern, the spatial resolution and the noise of this detector were carefully

characterized.

We developed a statistical technique for characterizing position-sensitive detec-

tors (PSD), using estimators such as the average, variance, and spatial correlation

functions. Spatial correlations between pixels reduce the fluctuations of the signal

when compared to Poisson noise. Using this technique, the resolution function and

quantum efficiency of two PSD’s were measured. The widths of spatial correlation

functions of static speckle patterns from Cu3Au agree well with the widths of the

Fraunhofer diffraction of the pinholes used, convolved with the detector resolution.

The speckle pattern contrast is smaller than expected. The speckle size and contrast

depend on the incident X-ray optics as expected for X-ray speckle.

We measure Cu3Au speckle patterns after a quench from the fcc disordered phase

to the L12 ordered phase. The dominant speckles appear after the quench, and re-

main fixed in reciprocal space. The domain coarsening is seen as an overall increase

in intensity and a sharpening of the diffuse peak. These dynamics agree with numer-

ical simulations of model A. Both experiments and simulations show that the time

fluctuations of the intensity have small amplitudes and very long time scales. This

differs from equilibrium IFS, where fluctuations amplitudes are as large as the signal.

We have demonstrated the feasibility of XIFS in Cu3Au. The use of coherent X-rays

allows one to measure the ordering kinetics of binary alloys in new ranges of length

and time scales.
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Recherche du Québec. In these time of budgetary restraint, I feel sad that young

people today who are starting their graduate degrees might not have the same op-

portunities as I had several years ago.

J’aimerais remercier mes parents pour m’avoir laissé choisir librement ma voie

dans la vie. Merci aussi pour votre aide financière et votre support moral pendant
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1

Introduction

The development in the last 30 years of high energy synchrotron rings dedicated

to the production of synchrotron radiation has made possible many exciting new

fields of science and technology. This high energy physics technology is used today

by molecular biologists, chemists, physicists, medical doctors and engineers to find

solutions to both fundamental and applied problems. In the field of solid-state physics,

these sources have made many X-ray spectroscopy or scattering techniques feasible

or more powerful. Some examples include time-resolved X-ray scattering, nuclear X-

ray scattering, surface X-ray scattering, resonant and non-resonant X-ray scattering,

Diffraction Anomalous Fine Structure (DAFS), coherent X-ray scattering, as well

as many more1. This thesis will report on one of these recent developments which

uses the high brilliance and transverse coherence of synchrotron radiation in X-ray

scattering experiments. This transverse coherence greatly affects the observed X-ray

diffraction patterns from disordered materials.

When coherent light illuminates a material with a random microstructure, a grain-

iness in the scattered beam is observed, called speckle. Speckle is a general feature of

scattered coherent light from a medium where some dielectric constant fluctuations

are present. It was first observed over a century ago by Exner[3, 4] and Laue[5] on

Fraunhofer diffraction rings produced by light scattered from small particles. It is

seen in many experimental systems: in laser light reflected by a rough surface2, in the

1See the wide variety of scientific projects investigated in modern synchrotron radiation facilities like
the European Synchrotron Radiation Facility or the National Synchrotron Light Source in their
respective Annual Reports [1, 2].

2In this case, speckle is considered as a nuisance that must be minimized to reveal the surface profile
[6].
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2 1 Introduction

scattered light from equilibrium density fluctuations in a fluid, and in electron micro-

scope images from amorphous semiconductors1. It is a characteristic of the theoretical

structure factor of a random system where the fluctuations are caused by phasons in

a quasi-crystal [8, 9, 10], phonons [11] and charge density waves in a perfect crystal,

and in simple models of metallic glasses [10].

A speckle pattern is caused by coherent interference between all the scattered

secondary waves randomly phase shifted by different regions of the material. If these

regions move in time with characteristic time τc, then the intensity correlation function

of the scattered light for a given scattering wave-vector ~q, < I(~q, t)I(~q, t + δt) >t,

will decay with a characteristic time related to τc. Understanding the functional

dependence of the correlation time on the momentum transfer allows for the study of

transport properties of a material.

For example, the equilibrium intensity fluctuations of dilute spherical particles in

a simple liquid follow < I(~q, t)I(~q, t + δt) >t∝ 1 + e−2Dq2τ , where D is the diffusion

constant of the spheres in the liquid and q is the wavevector [12]. A plot of 1/τc

versus q2 allows a measurement of the transport properties of the material. Using

the Stokes approximation, D = kBT/(6πηa), where kB is the Boltzmann constant,

T the temperature, η the viscosity of the liquid, and a the sphere’s average radius

[12]. Thus by using spherical particles with a known radius a, one can measure the

temperature dependence of the viscosity by measuring the temperature dependence

of D, or by measuring the radius of some particle in a solution of known viscosity.

This time correlation technique, often called Dynamic Light Scattering (DLS), In-

tensity Fluctuation Spectroscopy (IFS), or Photon Correlation Spectroscopy (PCS)2

has been used extensively with visible light to study the dynamics of very slow equi-

librium and non-equilibrium fluctuations in transparent fluids, colloids and liquid

crystals undergoing continuous phase transitions. This technique studies fluctuations

with frequencies ranging from 10−3 to 108 Hz and length scales ranging between

2000 Å and 20 µm [14, 13]. It is complementary to inelastic light scattering tech-

1See Ref. [7] and references within.
2For an introduction to IFS, see the book by B. Chu[13], and references within.



3

niques like Brillouin and Raman scattering, which study faster processes (107 − 1014

Hz) involving respectively acoustic and optical waves in materials. This technique

has been limited to length scales above 200 nm when using lasers with the shortest

wavelength available. The largest wavevector observable with visible light scattering

is qmax = (4π/200) nm−1, which corresponds to back scattered light. This technique

has been recently extended to hard X-rays by using high brilliance second generation

synchrotron radiation sources, thus improving the technique sensitivity to atomic

length scales with qmax ≈ (4π/0.1) nm−1.

Sutton et al.[15] demonstrated that by appropriately collimating an incoherent

monochromatic source of X-rays like an X-ray insertion device1, one can get sufficient

coherent flux to perform IFS at atomic length scales, through opaque materials. This

first demonstration showed time independent speckle patterns from antiphase domains

in Cu3Au (100) [15]. Since this first demonstration, static speckle patterns have

been observed in different systems: in gold coated diblock copolymer films[16], in

synthetic multilayers[17], in the superlattice peak of a charge density wave in the

one-dimensional conductor K0.3MoO4 [18], and in another binary alloy Fe3Al[19, 20].

Sutton et al. also demonstrated the feasibility of X-ray IFS (XIFS) in a study of

the kinetics of an order-disorder phase transition in Cu3Au after a quench from the

high temperature disordered phase to the low temperature ordered phase by measur-

ing the fluctuations of the scattered intensity with a scintillation counter [21]. Within

the last year, XIFS experiments have been performed successfully on the equilibrium

critical fluctuations of the binary alloy Fe3Al[19] and in equilibrium fluctuations in

gold colloids[22, 23]. Brauer et al. [19] performed XIFS at atomic length scales, ob-

serving intensity fluctuations when the Fe3Al sample was heated above the critical

temperature of the continuous phase transition. Dierker et al. [22] have measured

exponential correlation functions, characteristic of the Brownian motion of gold par-

ticles in a colloid with excellent signal to noise ratio. Chu et al. [23] also observed

XIFS on a gold colloid using X-ray produced by a bending magnet beamline, with

1An insertion device is a periodic magnetic structure used to generate synchrotron radiation.



4 1 Introduction

a coherent flux several orders of magnitude smaller than Ref. [22]. These recent ex-

periments show the power and promise of this new field of X-ray scattering. This

new technique promises to be quite helpful in studying the equilibrium and non-

equilibrium dynamics in binary alloys, in amorphous materials and molten metals,

in liquid crystals, in complex fluids like colloids and polymer blends, in gel networks,

and in incommensurate systems like charge density wave or ferroelectric systems.

IFS is well understood for equilibrium fluctuations, but little experimental work

has been performed using IFS on the non-equilibrium coarsening dynamics of a first

order phase transition. One of the only other studies of coarsening in a first-order

transition with dynamic light scattering was done on a binary fluid (conserved order

parameter), where the intensity fluctuations were studied after quenches into the

miscibility gap. Kim et al. [24] found that the power spectrum of the scattered

intensity P (f) measured after the quench was non-Lorentzian, following P (f) ∝
exp(−|f |/f0), with f0 < 0.1 Hz. This power spectrum appeared to be stationary

because it was present in the power spectrum of different consecutive subsets of their

data. Hydrodynamic effects complicated the analysis of the intensity fluctuations in

this system by increasing the droplet growth exponent by a factor of five, and causing

oscillation in P (f).

A simpler system for studying the intensity fluctuations due to the coarsening dy-

namics of a first order phase transition would be a system with a non-conserved order

parameter (NCOP) like a binary alloy. Such a system would be free of hydrodynamic

effects, and should be easier to understand because of the absence of conservation

laws.

This thesis reports on the first study of the ordering kinetics of an order-disorder

phase transition in a binary alloy with coherent X-rays. We measure the scattered

intensity fluctuations from the superlattice peak (100) of Cu3Au, after a quench from

the equilibrium disordered state above the critical temperature Tc of the first order

phase transition, to the degenerate ordered state below Tc. The speckle patterns

of Cu3Au generated by coherent illumination of the sample are measured with a
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charge-coupled device (CCD) array. The main advantage of the CCD array is to

record hundreds of two dimensional speckle patterns, with a spatial resolution which

matches the fine speckle features, and with a time resolution of tens of seconds to a

few minutes [25], which is sufficient to measure the speckle pattern dynamics.

The binary alloy Cu3Au was chosen because it is a classical system for the study

of a first-order phase transition. It has been studied for over half a century1. The

equilibrium properties of this system are analogous to a three dimensional Ising model

with antiferromagnetic coupling. Furthermore, the non-equilibrium ordering kinetics

of Cu3Au has been studied extensively with incoherent illumination in recent years [28,

29, 30, 31, 32, 33]. After a quench through the order-disorder transition, nucleation

and growth of ordered domains occur2. After nucleation, the late stage dynamics

is controlled by curvature driven growth with the average domain size Rd ∝ t1/2.

The scaling properties of the incoherent structure factor are well established and are

universal features of ordering. The spherically averaged structure factor scales as

S(q, t) = td/2f(qt1/2), where d is the dimensionality, and f(x) is a universal scaling

function.

The theoretical foundation of IFS with non-equilibrium phenomena is not as well

understood as its equilibrium counterpart. Therefore, it is important both exper-

imentally and theoretically to develop an understanding of these phenomena. An-

other motivation for this thesis is to investigate the non-self averaging behavior of

first-order phase transitions[36]. Roland and Grant [36] predicted 1/f noise in the

fluctuations around scaling for a macroscopic quantity like the average domain size,

in analogy with self-organized criticality. This is believed to be a universal feature of

first-order phase transitions.

In Chapter 2, we review some of the important concepts of coherence and scattering

with coherent X-rays. Most of this terminology was developed in the last thirty years

by light scatterers, but may be unfamiliar to scientists specialized in the fields of

X-ray or neutron scattering. In Chapter 3, we develop statistical techniques for

1The order-disorder transition in Cu3Au is discussed in several X-ray scattering books [26, 27]
2Excellent reviews are given in Ref. [34, 35].
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characterizing position-sensitive detectors (PSD) which were inspired from our data

analysis of speckle patterns in Cu3Au. In this work, it was essential to separate the

noise due to counting statistics from genuine intensity fluctuations, and to develop

an understanding of the inherent spatial correlations of the detected signal in a PSD

in order to estimate the speckle size. This work has been published recently [37].

Chapter 4 discusses the experimental method used for this work, expanding points

developed earlier in Chapter 2. In Chapter 5, results from static and time-dependent

measurements are reported, and compared to numerical simulations.
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Coherent X-rays

2.1 Definitions of coherence

In coherence theory, two types of coherence are discussed: longitudinal and transverse

coherence. Longitudinal coherence is a wave’s property of interfering with a time-

delayed copy of itself. Longitudinally coherent light will produce fringes in a Michelson

interferometer until its two mirrors are separated from each other by a distance much

larger than the longitudinal coherence length [38] given by

ll ≈ λ2/2δλ, (2.1)

where λ is the wavelength of the light, and δλ/λ is the relative bandwidth of the

source. Eq. 2.1 follows from the Heisenberg uncertainty principle δντl ≈ 1, where δν

is the frequency bandwidth of the light and cτl = ll, where c is the speed of light

in vacuum. Stated physically, the longitudinal coherence length is the characteristic

length along the direction of propagation of a wave packet emitted by a given poly-

chromatic source. For a monochromatic wave, ll is infinite. For a constant relative

bandwidth δλ/λ, ll is proportional to the wavelength used.

A wave is called transversely coherent if it can produce fringes in a Young’s double-

slit experiment. The transverse coherence length lt characterizes the loss of coherence

or of fixed phase relationship between two points on a wavefront. In a Young’s double-

slit experiment, no interference fringes are seen [38] if the two slits are separated by

a distance d much larger than the transverse coherence length

lt = λRs/2ds = λ/2α, (2.2)

7
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where Rs is the source to observation point distance, ds is the source size, and α =

ds/Rs is the opening angle subtended by the source at the point of observation.

Stated in another fashion, if one places two pinholes separated by d < lt in front of

an extended source, the interference patterns generated by each element of the source

overlap each other, thus interference is visible. For a point source, the transverse

coherence length diverges. For an extended source, lt increases with increasing λ,

making it easier to observe interference effects at longer wavelengths. The transverse

coherence length is also inversely proportional to the opening angle subtended by the

source at the point of observation.

Formally, a source is coherent when there is a non-zero statistical correlation be-

tween electric fields ~E(r1, t1) and ~E(r2, t2). The mutual coherence function is defined

by

Γ12 = <~E∗(r1, t1) ~E(r2, t2)>t, (2.3)

where the average is taken over time.

It can be shown [39] that the mutual coherence function far away from an in-

coherent source made of independent radiators1 simplifies to the spatial Fourier

transform of the source intensity profile. Then the complex coherence factor

µ(~r1, ~r2) =
e
−πi(r2

2−r2
1)

λRs
∫∞
−∞

∫∞
−∞ dx′dy′I(~r′) exp( 2πi

λRs
~r′ · (~r2 − ~r1))∫∞

−∞
∫∞
−∞ dx′dy′I(~r′)

, (2.4)

where the vector ~r′ is a small vector in the source plane, λ is the average wavelength

of the source, and ~r1 and ~r2 are two vectors in the plane of observation perpendicular

to the optical axis of the source and placed at a distance Rs from the source. This

is called the Van Cittert-Zernicke theorem. It holds for small angles of observation

such that the transverse distance |~r2 − ~r1| << Rs, and under quasi-monochromatic

conditions. This theorem is very useful because it can be used to calculate the fringe

contrast in a Young’s double-slit experiment [39] for most light sources.

1This assumption characterizes nearly all optical sources other than a laser. It can be applied to
synchrotron radiation.
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Following Goodman [39], we define the coherence area by

Ac =
∫ ∞

−∞

∫ ∞

−∞
dx′dy′|µ(x′, y′)|2. (2.5)

For an incoherent source with a spatially uniform intensity profile, it can be shown

[39] using the Van Cittert-Zernicke theorem that the coherence area in Eq. 2.5 reduces

to the product of the two perpendicular transverse coherence lengths of the source

defined in Eq. 2.2. Eq. 2.5 will be used in section 5.1.2 to calculate the observed

contrast of our diffraction patterns.

2.2 Properties of synchrotron radiation

The use of synchrotron radiation over the past thirty years has revolutionized the

field of X-ray scattering. Today’s range of scientific activities in the X-ray scattering

community would not be as rich and varied without the use of synchrotron radiation1.

This radiation has several properties which make it ideal for experiments in physics,

chemistry, biology, medicine, engineering, material science and in the development of

new drugs and technologies. The photon energy available at a synchrotron ranges

from the infrared to gamma rays. No other single source is able to cover such a wide

band of energies. This energy can be easily selected for a given system by the use of

monochromators and gratings, with a wide range of energy bandpass, δE/E, typically

between 10−2 to 10−4. The major improvement over standard laboratory sources

is the huge increase in intensity, allowing studies of time dependent dynamics and

spectroscopies on a wide range of time scales (10−12 − 104 s), or studies of scattering

from sample volumes as small as 1(µm)3 (1011 atoms!), weak scatterers like light

elements, surfaces and interfaces a few monolayers thick, nuclear charge, or magnetic

moments. The source divergence is quite small due to the radiation cone which is

shrunk to an opening angle of 1/γ, where γ = E/m0c
2, m0c

2 is the rest mass of the

electron or positron, and E is its total energy in the laboratory frame. Furthermore,

the source size is small. These two properties yield a large coherent flux which can be

1For an introduction to synchrotron radiation, the reader is referred to recent books on the subject
[40, 41].
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used in coherent X-ray scattering experiments and X-ray holography. The incident X-

ray polarization can be controlled to produce linear, circular or elliptical polarizations.

This allows for resonant and non-resonant magnetic X-ray scattering, or circular

dichroism. Finally, the beam is pulsed, which allows for different spectroscopies and

excitation modes to be studied.

The X-ray sources used in this work were insertion devices. An insertion device is a

periodic magnetic structure inserted in a straight part of the synchrotron ring. These

devices cause the electron orbit to oscillate as a sine wave. The X-rays generated

by these oscillations are linearly polarized in the plane of the orbit. Most scattering

experiments using synchrotron radiation use a vertical scattering plane to reduce

polarization losses [26].

These sources are characterized by a large brilliance or brightness, B, defined as

the flux of photons per unit of phase space, which is the flux of photons per unit

of source area per unit of solid angle measured in photons/s/mm2/mrad2/0.1%BW,

where BW stands for the X-ray bandwidth δλ/λ. For many optical transformations,

the brightness is an invariant. For example, a mirror can be used to focus the X-ray

beam to a small spot size, but the beam divergence is increased in proportion, thus

the product of the spot size times the beam divergence is conserved. In practice, the

brightness may be lost in absorption by windows, or in optical aberration on optical

elements like mirrors and monochromators.

An insertion device is characterized by a deflection parameter

K = αγ = eBλ0/(2πm0c
2) ≈ 0.934B(T )λ0(cm), (2.6)

where α is the maximum deflection angle of the electron trajectory with respect to

the axis of the insertion device. This angle characterizes the deflection of the electron

trajectory by the periodic magnetic field B with laboratory frame period λ0[40]. An

insertion device with K > 1 is called a wiggler while one with K < 1 is called an

undulator.

A wiggler has a very broad energy spectrum similar to a bending magnet spectrum

[41]. Because the angular deviation caused by a wiggler is quite large compared to
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the angular cone of the emitted synchrotron radiation, the radiation emitted from

different periods of the wiggler adds incoherently. Therefore, the peak intensity is

proportional to the number of magnetic periods N . This device has more operational

freedom than a bending magnet because the magnetic field can be made as large as

necessary without changing the electron orbit.

The radiation emitted by an undulator is quite different from wiggler radiation

because the radiation emitted from a given period adds coherently with the radiation

generated at a later time at the subsequent period [41]. The brightness is proportional

to N2, and its spectrum is peaked around well defined wavelengths called harmonics,

functions of λ0 [41]. The wavelengths of these harmonics along a direction parallel to

the plane of the orbit are

λn =
λ0

2nγ2
(1 +

K2

2
), (2.7)

where n = 1, 2, 3... [41], and their relative wavelength spread is

δλ

λ
=

1

nN
. (2.8)

With current undulator designs, the relative bandwidth of a given undulator harmonic

is typically in the range of a few percent.

2.3 X-ray scattering

In an X-ray scattering experiment, one measures the differential cross-section of X-

rays coherently scattered by the electrons in the material. Using the first Born ap-

proximation, the X-ray differential cross-section

dσ

dΩ
= Φs/Ii ∝ S(~q, t), (2.9)

where Φs is the scattering rate measured in a solid angle dΩ subtended by the detector,

Ii is the incident intensity, and the structure factor is

S(~q, t) = |ρ(~q, t)|2, where ρ(~q, t) =
∫

~drρ(~r, t)e−i~q·~r. (2.10)

Here ρ(~q, t) is the Fourier transform of the electronic density, ρ(~r, t), and ~q ≡ ~kf −~ki ,

where ~kf and ~ki are respectively the wavevectors of the scattered and incident X-rays
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Source Detector

Sample

Rs Rd

Volume element dV

ri

a)

b)

ki kf

G=(100)

ΘBΘB

ki kf

c)

Figure 2.1: a) The Fraunhofer condition holds for plane wave illumination such that the distance
source-sample Rs and the distance sample-detector Rd are much larger than the sample size. b)
The phase difference, in the Fraunhofer condition. The phase difference δ = ~kf · ~ri − ~ki · ~ri, where
the magnitude of the incident and scattered wavevectors |~ki| = |~kf | = 2π/λ, and ~ri is the position
of the volume element dV in the sample reference frame. c) The Bragg condition.

with magnitude |~kf | = |~ki| = 2π/λ. The electronic density may change in time. This

dynamics can be tracked by the time dependence of the structure factor.

In scattering theory, the first Born approximation [27] assumes weak scattering

or a small scattering volume. This approximation is also used for the kinematic

theory of X-ray diffraction. In this treatment, the Fraunhofer diffraction condition

is assumed which means that the sample is illuminated by plane waves originating

from a point source, placed far away from the scattering center. It is important to

stress that in a typical scattering experiment, this condition is not fully satisfied and

one must correct for the finite source size and input divergence (see Fig. 2.1a). For

synchrotron radiation, this condition can be more easily satisfied because of the small

input divergence and source size. In this thesis, the experimental setup is close to the

Fraunhofer condition. This will change qualitatively the structure factor observed.

We will discuss this in more detail in section 2.6.

For a crystal, the electronic density is periodic and has translational symmetry, so
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that

ρ(~r) = ρ(~r + ~T ), with ~T = x1~a1 + x2~a2 + x3~a3, (2.11)

where ~T is a translation vector obtained by a linear combination of the primitive

translation vectors ~ai, and the integers xi. The crystal electronic density is also

periodic in Fourier space, with primitive translation vectors

~G = h~b1 + k~b2 + l~b3, where (2.12)

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
, ~b2 = 2π

~a3 × ~a1

~a1 · (~a2 × ~a3)
, ~b3 = 2π

~a1 × ~a2

~a1 · (~a2 × ~a3)
, (2.13)

and h, k, l are integers called the Miller indices. Note that the vectors ~a and ~b are

perpendicular, so ~ai ·~bj = 2πδij, where i, j = 1, 2, 3. Using the fact that the Fourier

transform of a crystal is also periodic in reciprocal space, it is easy to show1 that

scattering maxima occur in Eq. 2.10 when the scattering vector ~q ≡ ~G. These max-

ima are called Bragg peaks. The Bragg condition occurs when the phase difference

between light scattered from parallel planes of atoms (see Fig. 2.1b) is a multiple of

2π. The scattering angle θB, shown in Fig 2.1c, is given by Bragg’s formula

2dhkl sin θB = λ, (2.14)

where θB is the Bragg angle, and dhkl = 2π/|~G|. For an infinite crystal, these Bragg

peaks are Dirac delta functions in reciprocal space, but for a finite crystal of linear

dimension D, their intrinsic width in reciprocal space is proportional to 1/D. When

some disorder with correlation length ξ < D is present in the sample, the Bragg peak

width becomes proportional to 1/ξ > 1/D.

In a crystal, since the atomic positions are periodic, the structure factor S(~q) in

Eq 2.10 can be rewritten as a sum of waves scattered by each lattice point in the

crystal. Then, one finds

S(~q) ∝ |∑
i

F exp(−i~q · ~ri)|2, (2.15)

1This is derived for example in Chap. 2 in Kittel [42].
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where ~ri are the positions of the lattice points in the scattering volume, and F is the

form factor of all the atoms in the basis of the unit cell given by

F =
∑

j

fj exp(−i~q · ~rj), (2.16)

where fj and ~rj are respectively the usual atomic form factor and position in the unit

cell for the jth atom in the basis. Note that fj is complex, with fj = f1j + if2j
1. For

an orthorhombic lattice, it is easy to show [26], by evaluating the sums in Eq. 2.15,

that the structure factor

S(~q) = |F |2 sin2(N1a1qx)

sin2(qxa1)

sin2(N2a2qy)

sin2(qya2)

sin2(N3a3qz)

sin2(qza3)
, (2.17)

where ~q = (qx, qy, qz), and N1a1, N2a2, N3a3 are the sample linear dimensions. Fig. 2.7

shows the structure factor of a two dimensional square lattice with lattice constant

a with 100×100 atoms. The peak intensity in this approximation is proportional to

the square of the sample volume, the width of the Bragg peak along qi is the inverse

of the sample linear size ∆qi ∝ 1
Niai

, and the scattered integrated intensity over all

wavevectors is proportional to the sample volume (or the total number of atoms).

The side lobes in Fig. 2.7 are the secondary maxima of Eq. 2.17.

Another important property of scattered X-rays is the change of state of polariza-

tion of the incident beam by the scattering process. X-rays polarized perpendicular

to the scattering plane, the plane parallel to both incident and scattered wavevec-

tors, suffer no loss of intensity while those polarized in the scattering plane suffer a

cos2(2θB) loss [26]. This effect can be used to make an X-ray polarizer or analyzer

by scattering from a crystal with 2θB = π/2. In the experiments reported here, the

scattering plane was vertical, and perpendicular to the polarization vector.

Finally, in X-ray scattering experiments, one needs to select a narrow energy band

of the incident polychromatic beam. In the hard X-ray region of the spectrum, this is

done by using Bragg reflection from a nearly perfect single crystal, called a monochro-

mator. To understand the wavelength dependence of ll, one needs to understand the

1The complex term is caused by absorption of the incident or scattered wave. For hard X-rays,
f1 ≈ Z, where Z is the number of electrons in the atom and f2 is related to the mass absorption
coefficient, µm, by f2 = µm

A
2NAλre

[43], where A is the atomic mass, NA the Avogadro number and
re = e2/(4πε0m0c

2) = 2.82× 10−15 m the classical electron radius[41].
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wavelength dependence of δλ/λ for a single crystal monochromator. It is calculated

by taking the derivative of Bragg’s law in Eq. 2.14 with respect to λ. For a per-

fectly collimated polychromatic X-ray beam, it is easy to show [44] that the relative

bandwidth

δλ/λ = δθ/ tan θ = reNλ2Re{F}/(π sin 2θ tan θ) ∝ NRe{F}d2
hkl. (2.18)

Eq. 2.18 was simplified by replacing δθ by the Darwin width of an absorbing semi-

infinite monochromator crystal with δθ = reNλ2Re{F}
π sin 2θ

[26], where N is the electron

density, re is the classical electron radius, Re{F} is the real part of the form factor

of the Bragg plane, and recalling that sin θ = λ/2dhkl. One finds that δλ/λ is weakly

dependent on wavelength through the wavelength dependence of Re{F}. Brauer et

al. [44] also consider the case where the incident X-ray beam has a finite divergence.

Eq. 2.18 then becomes δλ/λ = (δθ + Di)/ tan θ, where Di is the input divergence.

Then the relative bandwidth will be wavelength dependent through the wavelength

dependence of θ.

2.4 X-ray scattering from Cu3Au

The binary alloy Cu3Au is a classical system for studying the properties of first order

phase transitions. It has been studied for over half a century, and its equilibrium and

non-equilibrium incoherent scattering is fairly well understood. Most of the earlier

X-ray scattering work consisted of measuring the equilibrium properties of the alloy,

like the equilibrium temperature dependence of the long range order, the anisotropy

of the Bragg peak in reciprocal space due to the presence of antiphase domains,

and the diffuse scattering from the short range order fluctuations. Several textbooks

discuss the scattering from Cu3Au [26, 27]. The focus of research on Cu3Au has

changed in recent years. For example, some of the work has been focused on studying

the nature of the phase transition on the surface layers of Cu3Au single crystals

[45, 46, 47], while others have studied the non-equilibrium kinetics of Cu3Au, after a

quench from its disordered phase to the ordered phase [28, 29, 30, 31, 32, 33]. The

latter work is motivated by a need to improve our understanding of non-equilibrium
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Figure 2.2: A schematic plot of the powder diffraction pattern of Cu3Au, above and below Tc using
a = 3.771 Å[32], and λ = 1.5405 Å, with domains below Tc of 100 Å. The equilibrium real space
structure is shown beside. (From Ref. [27])

processes. These processes are important in the fabrication of many technologically

relevant materials. Furthermore, since non-equilibrium processes are quite challenging

conceptually, much work remains to be done to understand them.

Cu3Au goes through an order-disorder transition at a critical temperature Tc =

390◦C [26]. Fig 2.2 shows the structure factor for a powder sample and the real space

equilibrium structure above and below Tc. Below Tc, the structure is L12 with a basis

consisting of one Au atom occupying the corner position (0, 0, 0) of the cubic lattice

with 3 Cu neighbors on the neighboring face center sites (1/2, 1/2, 0), (0, 1/2, 1/2),

(1/2, 0, 1/2) of the unit cell. Above this transition temperature, the structure is fcc

because each atomic species diffuses through the lattice randomly, yielding an effective

atomic form factor for each site of the basis given by f = 1/4fAu + 3/4fCu, where

fAu and fCu are the form factors of Au and Cu respectively. The peaks in Fig. 2.2

which remain unchanged above Tc are called fundamental peaks and are not affected

by the degree of long range order in the crystal. The peaks that disappear above

Tc are called superlattice peaks. Following Warren [26], it is easy to show that the

integrated scattered intensity

S(h, k, l) =





16(3fCu

4
+ fAu

4
)2 for h, k, l all odd or even,

ψ2
BW (fAu − fCu)

2, for mixed h, k, l,
(2.19)
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where ψBW is the Bragg Williams order parameter, ranging between zero in the

disordered phase, to one in the fully ordered phase. The integrated intensity of

a superlattice peak is proportional to the square of the order parameter, and to

the square of the difference between the atomic form factors of Cu and Au. The

fundamental peaks occur for unmixed h, k, l, and are independent of ψBW .

Although the long range order disappears above Tc, some weak scattering is still

observable around the superlattice peak. It is due to the tendency of Au atoms, for

example, to surround themselves with three Cu atoms as nearest neighbors, causing

short range spatial correlations in the disordered states which are observable as diffuse

scattering [27, 48].

The ordered state has a four fold degeneracy since the Au atom can occupy any

of the four sites of the basic unit cell. This degeneracy leads to the formation of

four competing phases forming large antiphase domains, separated by domain walls.

There are two types of domain walls in Cu3Au [30, 32]. Type I domains walls are

formed by a half-diagonal glide in planes perpendicular to the cubic axes1. They

have low interfacial energy because they do not require a change of nearest neighbor

coordination along the interface [32]. Type II walls are formed by a half-diagonal glide

across planes perpendicular to the cubic axes2. They have a higher interfacial energy

because they require a change of nearest neighbor configuration. It is well known

that these domain walls give rise to an anisotropy in the Bragg peaks of the ordered

phase. Warren [26] derives the line shape of the superlattice peak, assuming that it is

caused only by Type I walls, where domains forming along the three crystallographic

axes are independent of each other, and the probability of crossing a domain wall, γ,

is small. The scattered intensity for planes with Miller index (hkl), where h, k are

indexes with the same parity is

S(hkl) = |F |2 N1γ

γ2 + (πh)2

N2γ

γ2 + (πk)2

sin2(πN3l)

(πl)2
, (2.20)

where the Ni are proportional to the sample linear size. This peculiar line shape gives

1In the [001] direction, this corresponds to displacing a domain with respect to another by 1/2[110]
2In the [001] direction,this corresponds to displacing a domain with respect to another by 1/2[101]
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Figure 2.3: The superlattice peak in reciprocal space from Ref. [26]. It is anisotropic because Type
I walls form in the three crystallographical direction. The fundamental reflections are shown with
solid circles.

rise to disks in reciprocal space shown in Fig 2.3. For the (100) superlattice peak for

example, this gives a disk oriented in a plane parallel to the (011), with the narrower

dimension along the (100). A more detailed lineshape is given in Ref. [30].

Recent time-resolved studies of the ordering kinetics of Cu3Au have revealed quite

rich dynamical features of the ordering and coarsening process. Noda et al. [29]

found that the structure factors in the later stage can be rescaled by a simultaneous

renormalization of time and space, with the characteristic length L(t) ∝ t1/2. They

found that a Lorentzian-square function was a good scaling function for all quench

depths. They found evidence of an incubation time for the formation of a critical

droplet size, which later grows to macroscopic size. This incubation time diverges as

the temperature approaches the critical point.

Ludwig et al. [30] studied the early stage of the nucleation and growth process

with a fraction of a second time resolution. They found evidence that the early

kinetics of the short range order fluctuations for quench temperatures just below Tc is

a relaxation to a metastable state, which then slowly decays by nucleation and growth.

For lower temperatures, the time scales of the two processes become comparable, and

for Tc−T > 34 K, they found evidence for continuous ordering at a temperature well

above the classical spinodal temperature.

Nagler, Shannon et al. [31, 32, 33] identified three distinct kinematic regimes:

nucleation, ordering and coarsening. A delay in the growth of the integrated intensity
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was attributed to an incubation time for nucleation like in Ref. [29]. It was found that

the structure factor crosses over from having a Gaussian line shape during the early

stage of the ordering process, where the ordered nuclei are small and embedded in a

disordered matrix, to a Lorentzian-square line shape during the late time coarsening

process. They found that the anisotropic disk shape reflection sharpens in time with

the same exponents along the disk plane and through the disk axis. They showed that

the scaling exponent in the coarsening regime is consistent with the non-conserved

order parameter (NCOP) exponent n = 1
2

for curvature driven growth.

We will study the late stage of the ordering kinetics of the phase transition after a

quench from the high temperature fcc phase to the low temperature phase, and record

the scattered intensity of the Cu3Au (100) super-lattice peak with a CCD array (see

Fig. 2.2).

2.5 Production of coherent X-rays: experimental method

Before the invention of lasers, incoherent thermal sources were used to produce co-

herent illumination. By collimating an incoherent source like a mercury arc lamp [49]

with a small aperture, a coherent light source can be obtained. The first speckle pat-

terns measured with hard X-rays were observed with an incoherent source! This was

demonstrated by Sutton et al. [15] for an incoherent source of X-rays by limiting the

beam size to dimensions comparable to its horizontal and vertical transverse coherent

lengths, lx, ly, given by rewriting Eq. 2.2 as

lx =
λRs

2dsx

, ly =
λRs

2dsy

, (2.21)

where Rs is the distance between the source and the point of observation, while dsx and

dsy are the horizontal and vertical source size. Fig. 2.4 shows a typical experimental set

up for such an experiment. Common symbols are defined on page IX for convenience,

and the particular experimental parameters for the two runs where we collected data

are shown in Table 2.1. Typical values at wavelength λ = 1.24 Å are given in

Table 2.2.
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Figure 2.4: The experimental setup. All variables are defined on page IX for convenience, and their
typical values are given in Table (2.1). The X-rays are generated by a wiggler or an undulator. The
source x-y slits allow for a change of the coherence lengths by reducing the effective source size. A
double Si (111) monochromator is set near 7.0 keV to prevent Cu fluorescence. The incident beam
intensity is monitored by an ion chamber. The collimating pinhole is used to limit the beam size
to a dimension comparable to the transverse coherence lengths. One of two detectors is normally
used: a CCD array, or a scintillator masked by a micron size pinhole which is mounted on an x-y
translation stage.

Table 2.1: Experimental parameters for the two experimental setups. The horizontal and vertical
source sizes dsx and dsy are given by their full widths at half maximum (FWHM). The effective
source size can be reduced by closing some upstream slits placed at a distance Rslit from the source.

Beamline CHESS NSLS X25

Source type undulator Wiggler

E keV 7.0 6.9

Rs m 25.8 27.8

Rslit m 17.8 10.5

dsx mm 2.55 1.46

dsy mm 0.167 0.068

Rc cm 6.7 6.75

Rd m 0.95 1.04
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In a typical incoherent X-ray scattering experiment with a laboratory source, λ =

1.54 Å, ds ≈ 1−10mm, Rs ≈ 1m resulting in lt ≈ 80−800 Å. Limiting the beam size to

such small length scales would not give any useful coherent flux. Since the beam size at

the sample position is also a few mm, the speckle pattern is washed out by incoherent

averaging [10]. Because of the high collimation of third-generation X-ray sources

and the large source-sample distances, typical coherence lengths are between 1-10

µm. Since these sources are several orders of magnitude brighter than conventional

sources, one can obtain a coherent beam with sufficient flux by collimating the incident

beam with pinholes of diameter comparable to lx,y (typically 4− 7µm).

The coherent flux, Φc, is calculated from the integrated flux going through a rect-

angular aperture with height ly and length lx, which accepts the full source divergence

αx, αy. It is easy to show that

Φc =
λ2B(λ)

4

δλ

λ
, (2.22)

where B(λ) is the brightness of the source. The relative bandwidth δλ/λ selected by

the monochromator is only weakly dependent on wavelength as shown in Eq. 2.18.

Therefore the presence of the λ2 term makes these experiments easier to perform

at longer wavelengths. Typical values of this flux at X25 and CHESS are given

in Table 2.2. With 1.2× 106 photons/s, X25 gives a coherent flux comparable to

a laboratory source. An increase of a factor 500 should be gained by performing

experiments at the Advanced Photon Source (APS).

Past and current coherent X-ray experiments can be limited by this small coherent

Beamline lt ll B Φ

µm µm ph/s

X25 NSLS 1-25 0.44 3× 1014 1.2× 106

CHESS Undulator 0.6-10 0.44 3× 1015 1.2× 107

APS Undulator 10-10 0.44 1.5× 1017 6× 108

Table 2.2: Brightness and coherence lengths for different sources at 1.24 Å. Brightness measured in
ph/s/mm2/mrad2/0.01%BW .
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flux. A currently active area of research is investigating ways to improve the flux going

through the collimating pinhole, by sacrificing some vertical coherence with focusing

X-ray optics like a mirror [50, 51] or asymmetrically-cut crystals [44, 52]. The idea

originated from the fact that ly is typically an order of magnitude larger than lx for

synchrotron radiation, so that if one focuses the X-ray beam in the vertical direction

until the vertical divergence matches the horizontal divergence, then ly = lx, and

the coherent flux is increased through the pinhole because of the focusing. These

techniques are important since they will make it possible to tailor the coherence

volume lxlylz for a given experiment requiring, for example, a much smaller beam size

than the smallest of the transverse coherence lengths, or requiring equal horizontal

and vertical transverse coherence lengths [44].

Another approach for improving the scattered intensity is by optimization of the

product of the coherent flux, Φc, and the fraction of scattered X-rays with respect to

energy. One can show1 that the integrated scattered intensity for Cu3Au

Is ≈ B(λ)λ2 δλ

λ
ψ2µCu3Au|fAu − fCu|2, (2.23)

where ψ is the order parameter, fCu is the complex atomic form factor for Cu, and

µCu3Au is the absorption length in Cu3Au. Eq. 2.23 depends on the X-ray contrast

of the two elements Cu and Au. One way to increase the scattered intensity for the

study of order-disorder transitions is to choose the material with the largest difference

in atomic number. For the sake of simplicity, let us assume a fully ordered material,

with ψ = 1, and assume that one can tune the insertion device in such a way that

B is constant over the wavelength range of interest. Fig. 2.5 shows the approximate

scattered intensity integrated in q over the (100). The energy in this experiment

was set to 7 KeV, which is close to the optimal condition for Cu3Au. In a real

experiment, windows and monochromators may complicate this relationship; thus, it

is often simpler to measure the scattered intensity in order to optimize it.

1One needs to combine absorption effects and the integrated intensity of a superlattice peak in a
binary alloy found in Eq. 2.19, assuming no polarization losses.
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Figure 2.5: The energy dependence of the scattered intensity Is calculated from Eq. 2.23. The
atomic form factors for Cu and Au were taken from Ref. [53], and the mass absorption coefficients
were calculated from these form factors. The discontinuities are the absorption edges for Cu (near
9 keV) and Au (near 12 and 13.7 keV). Below, the optical path length difference in Cu3Au 2µ sin2 θB

(solid line) and the longitudinal coherence length ll (dashed line). Here ll is calculated from Eq. 2.1
and 2.18, neglecting the weak energy dependence of Re{F} for the Si (111) monochromator (only
1.5 % change over the energy range shown).

2.5.1 Coherence volume

The other condition for coherent scattering is that the optical path length differences

(OPLD) in the sample be smaller than the longitudinal coherence length of the source,

lz, such that

OPLD < lz =
λ2

2δλ
, (2.24)

where δλ/λ is the relative wavelength bandwidth of the source of radiation [38].

For 7.0 keV X-rays, filtered with a Si111 monochromator, δλ/λ = 1.4 × 10−4, giving

lz ≈ 0.6 µm. This coherence condition is achieved by using a thin sample, or a sample

with large enough absorption, or by scattering with a grazing angle of incidence

[16, 17]. Specialized monochromators can also be used to change the longitudinal

coherence length. For example, Dierker et al. [22] have used a wide bandpass X-

ray multilayer monochromator to select the smallest ll possible in order to maximize

the available coherent flux. It is also possible to increase ll by using higher order

reflections of Si, or by using high resolution monochromators like those used for
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d
z

Θ
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Figure 2.6: The condition for longitudinal coherence. It is satisfied because the optical path difference
(wider line), 2dz sin θ, is smaller than the longitudinal coherence length. The X-ray penetration
depth perpendicular to the surface is dz = µ sin θ, where µ is the sample X-ray absorption length.
Therefore, the longitudinal coherence condition is rewritten as ll < 2µ sin2 θ.

Mössbauer scattering or high energy inelastic scattering [54].

For Cu3Au, the absorption length at 1.77 Å is µ = 4.2 µm [55]. The difference

in optical path is illustrated in Fig. 2.6 for a symmetric Bragg reflection. The Bragg

angle θ = 13.67◦, and dz is the X-ray penetration depth in the material perpendicular

to the surface. The longitudinal coherence condition is fulfilled because the path

length difference, 2dz sin θ = 2µ sin2 θ = 0.47µm, is smaller than lz. Note also that

for Cu3Au, the OPLD is smaller than ll for all energies below 8.1 KeV or above 9.0

KeV as seen in Fig. 2.5.

The longitudinal coherence condition depends on the angle θ of the reflection.

Pindak et al. [18] have clearly demonstrated this effect by observing the contrast of

speckle patterns on superlattice reflections of a charge density wave in K0.3MoO3. For

this material, the longitudinal coherence condition is valid for θ < 9.5◦ [18]. They

demonstrated that speckle is observable for low order reflection with θ < 11◦, but

disappears for reflections with θ = 22.5◦.

2.6 Structure factor with coherent X-rays

Here two models are presented which give the reader a few examples on the present

and possible uses of coherent X-ray beams.
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2.6.1 Coherent X-ray scattering for the study of isolated defects or

artificially made structures

It is important to realize that the definition of the structure factor must be slightly

modified to take into account the coherence of the beam. The measured structure

factor is typically an ensemble average of the coherent structure factor calculated over

the coherence volume of the source. This ensemble average is typically performed over

the illuminated volume V >> lxlylz, where the coherence volume is the product of

the coherence lengths. Mathematically formulated, the structure factor observed in

a typical X-ray experiment is

S(~q, t) = <|
∫

lxlylz
d~rρ(~r)e−i~q·~ri|2>V . (2.25)

When the illuminated volume is comparable to the coherence lengths of the source,

the structure factor becomes sensitive to individual realizations of the ensemble, thus

becoming sensitive to the exact position of the atoms in the illuminated volume.

The first theoretical model shown here was suggested in the original demonstration

of speckle by Sutton et al. [15]. It consists of isolating single defects in a few µm

diameter beam to study the detailed microstructure of the material and to improve

our structural understanding of defects in condensed matter. In typical X-ray exper-

iments, one illuminates millions of defects incoherently, since the illuminated area is

typically 1 mm×1 mm but the X-ray beam transverse coherence lengths are on the

order of 1000 Å. Since the characteristic length scale of a defect ranges between a few

Å to a few µm, the presence of defects is seen only in slight changes of the line shape

of the Bragg peak which can be hard to interpret as a given defect type.

As opposed to incoherent experiments, coherent X-ray scattering techniques are

more sensitive to the exact position of atoms in the scattering volume. It gives a

structure factor that is very different depending on the type of defects illuminated.

An example of this sensitivity to disorder is shown in Fig. 2.7. The structure factor

of a two dimensional perfect crystal with a square lattice calculated using Eq. 2.17 is

shown. The calculation is shown for a crystal of 100 × 100 atoms. The peak height
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(1,1)

(1,0)

(1,1) (2,2)

Figure 2.7: (Top left) The central 20×20 atoms in a real space square lattice with lattice parameter
a, and S(~q) centered on the (1,1) (top right). A linear grey scale from 0 to 108 is used to display
the (1,1). The wave vector range shown from the (1, 1) centered on the middle of the image is
(2π/a±4π/L, 2π/a±4π/L), where the sample size L = 100a. (Middle) The central 20×20 atoms of
a real space two dimensional lattice distorted by an edge dislocation, and S(~q) centered around the
(1, 0) using the same range as the top image. (Bottom) S(~q) centered around the (1,1) and (2,2).
The Bragg peaks split into several satellites. The structure factor varies depending on the position
in reciprocal space.
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goes as the square of the number of atoms, and its width as the inverse of the sample

size. The middle image in Fig. 2.7 shows the real space lattice of a crystal distorted

by an edge dislocation1. The structure factor calculated from Eq. 2.15 is also shown

for the (1,0), (1,1) and (2,2). The original structure factor of the perfect lattice is

split into satellites of comparable magnitude but weaker intensity than the perfect

crystal. The splitting of the satellites is on the order of the FWHM of the perfect

square lattice. In order to look at defects on a quasi-perfect single crystal of Si, one

would look for structure on an angular scale comparable to the Darwin width of Si.

By using a high resolution set up, this experiment could be feasible.

One should note that some experiments have already been done on simple struc-

tures, such as two-dimensional gratings and multilayers. Recently, Robinson et al.

[17] observed speckle from a multilayer of GaAsxAlGaAs1−x. They developed several

theoretical approaches which could fit the observed random speckles. They found

that coherent X-ray scattering can be quite a sensitive tool for studying the disorder

of the lattice orientation on the surface of their multilayers. It appears that it can give

additional information which cannot be obtained from other experimental techniques.

Shen et al. [57] studied the structure of a two dimensional grating, using X-rays

with a transverse coherence length of the order of one µm. They did not match the

illuminated volume with the transverse coherence length of the source, thus some

ensemble average was performed. The measured X-ray scattering was modeled ad-

equately with the kinematic theory using a sample size given by the transverse co-

herence length of the source. They found that the added transverse coherence gives

microscopic as well as additional mesoscopic information on the grating structure,

such as its period, width and shape, atomic registry with the substrate, and crystal

lattice strain. Recently, Tanaka et al. [58] have used the technique demonstrated

above to measure surface diffusion and strain in the same oxidized grating as in

1The displacements d~r = (dx, dy) for all atoms were calculated by a simple model of an edge
dislocation, given by Eq. 30.6 in Christian [56]. Here the displacement of the atom at posi-
tion ~r = (x, y) in the crystal is dx = b/4π(1 − ν)[2(1 − ν) arctan(y/x) + xy/(x2 + y2)], and
dy = −b/4π(1 − ν)[(1 − 2ν) ln(x2 + y2) − x2/(x2 + y2)], using a Poisson Ratio ν = 1/3, and a
Burgers vector b = a, where a is the lattice parameter.
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Ref. [57].

2.6.2 Scattering from a binary alloy in equilibrium

We derive next some of the properties of the structure factor S(~q, t) obtained with

coherent light incident on a typical binary alloy like Cu3Au and Fe3Al, in thermal

equilibrium below the critical temperature, Tc, of a first order or a continuous phase

transition. This section is motivated by the need to understand the equilibrium short

range order fluctuations in equilibrium and non-equilibrium experiments which occur

within large antiphase domains. This section serves also as a good demonstration of

equilibrium IFS. The results derived below are valid for a large class of systems like

magnetic systems and binary alloys belonging to the non-conserved Ising universality

class. The discussion is limited to the region well above or well below a continuous

phase transition, outside the critical region1. The properties of the S(~q, t) for a system

in the conserved Ising universality class will be qualitatively consistent with those of

the non-conserved order parameter, although the exact dynamical properties will have

a different wavevector dependence due to the conservation laws.

The theoretical model used for this demonstration is a time-dependent Landau-

Ginzburg field theory model called model A in the Hohenberg and Halperin classi-

fication scheme [59]. This model describes well the equilibrium and non-equilibrium

properties of a binary alloy with a non-conserved order parameter [60, 61], where the

order parameter is proportional to the sublattice concentration of one of the atomic

species. The equilibrium dynamics of the order parameter is obtained by minimizing

a coarse-grained free energy F and solving

δψ(~r, t)

δt
= −M

δF

δψ
+ η(~r, t), (2.26)

where ψ(~r, t) is the order parameter measured at discrete position ~r on a square lattice

and at discrete time t, M is the mobility, and η(~r, t) is a noise term which takes into

account the coupling of the system to the thermal bath by fast variables. Here, the

1For a review of critical dynamics, see Hohenberg and Halperin [59].



2.6 Structure factor with coherent X-rays 29

noise term is Gaussian and uncorrelated in space and time with

<η(~r, t)η(~r′, t′)> = 2kBTMδ(~r − ~r′)δ(t− t′), and <η(~r, t)> = 0, (2.27)

where kB is the Boltzmann constant, δ(x) is the Dirac delta function, and the brackets

refer to an ensemble average. The free energy functional used is

F =
∫

d~r
(

κ

2
|∇ψ(~r, t)|2 +

r

2
ψ2(~r, t) +

w

4
ψ4(~r, t)

)
, (2.28)

where κ, r, and w are phenomenological constants, with w > 0, and r = r0(T/Tc−1),

such that r > 0 in the disordered phase above Tc, and r < 0 when two ordered

phases are stable below Tc, and r = 0 at Tc. The gradient term is used to model the

interfacial free energy between two different phases. In the single phase equilibrium

above Tc, F has a single well centered at the equilibrium value <ψ> = 0. Below Tc,

F has a double well, with symmetric minima at ψ = ±
√
−r
w

.

Eq. 2.26 can be rewritten as

δψ(~r, t)

δt
= −M

(
rψ(~r, t) + wψ3(~r, t)− κ∇2ψ(~r, t)

)
+ η(~r, t). (2.29)

Eq. 2.29 was solved numerically using Euler’s method to discretize time and a nearest-

neighbor approximation was used for ∇2 [60]. The simulations were performed in two

dimensions using periodic boundary conditions, and system sizes of 1282, 2562, or

5122. For this simulation, the thermodynamic constants were set to one such that

κ = −r = w = M = 1. To simulate the equilibrium dynamics, one of the phases was

selected by setting the initial condition ψ =
√
−r
w

, after which ψ was updated until

the system reached equilibrium. After reaching equilibrium, the structure factor was

simulated with time steps ranging between dt = 0.005− 0.05.

To understand the static and dynamic properties of the equilibrium order parame-

ter, let us study the disordered state. Above Tc, one can neglect the cubic non-linear

term in Eq. 2.29. Then, the dynamics of the order parameter is given by a stochastic

linear equation, which can be easily solved. Taking the Fourier transform of Eq. 2.29,

on finds
δψ(~q, t)

δt
= −M(r + κq2)ψ(~q, t) + η(~q, t). (2.30)
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From this equation, one sees clearly that large time fluctuations of the order parameter

will be exponentially damped with correlation time

τc =
1

M(r + κq2)
. (2.31)

Long wavelength fluctuations of the order parameter have slower decay rates than

shorter wavelength fluctuations. This will be important for understanding the time

correlation of the structure factor discussed later. Below Tc, a similar treatment can

be done by a Taylor expansion of ψ in Eq. 2.29 around its equilibrium value ψ =

±
√
−r/w. Then one finds τc = 1/M

κq2−2r
. Note that for a conserved order parameter,

the long range diffusion yields an extra q2 dependence in the denominator, thus τc

diverges at low ~q [12].

Following Eq. 2.10, the structure factor S(~q, t) = ψ(~q, t)ψ∗(~q, t), where ψ(~q, t) is the

Fourier transform of the order parameter. The time independent ensemble averaged

structure factor is the well known Ornstein-Zernicke structure factor given by

S(~q) =





ISR

r+κq2 for T > Tc,

ILRδ(~q) + Isr

κq2−2r
for T < Tc,

(2.32)

where ILR and ISR are respectively the peak intensities of the long range order and

short range order.

Note that to obtain Eq. 2.32, an ensemble average over all possible configurations

was done. If one looks at the structure factor of the instantaneous atomic configu-

ration S(~q, t), one does not simply observe a Lorentzian. Fig 2.8 shows S(~q, t) for a

typical binary alloy in equilibrium below Tc, numerically simulated with model A. Re-

gions with large intensity are next to regions with low intensity, with a characteristic

size of one pixel in the image, corresponding to

∆q = 2π/L, (2.33)

where L is the sample linear dimension. The equilibrium fluctuations of the scalar

order parameter add a random modulation to the ensemble averaged structure factor

in Eq. 2.32. A slice through the structure factor is shown next in Fig 2.9 for qy = 0.
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Figure 2.8: The instantaneous structure factor S(~q, t) for a typical binary alloy below Tc for a
given time t. A linear grey scale between 0 and 4 is used to display S(~q, t). A slice through the
origin of reciprocal space is shown in Fig. 2.9. The large spatial fluctuations with a characteristic
length of 1 pixel are speckles, caused by the short range order equilibrium fluctuations. In a typical
incoherent scattering experiment, the large spatial fluctuations disappear, and one observes that S(~q)
is a smoothly varying function of ~q, independent of the exact atomic arrangement. The coherent
illumination allows one to measure the time fluctuations of the structure factor in equilibrium by
studying the time fluctuations of the speckle pattern.
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Figure 2.9: An horizontal slice for qy = 0 through the center of Fig. 2.8 is shown with squares. The
ensemble averaged structure factor defined in Eq. 2.32, observed in a typical incoherent experiment,
is shown for comparison. The Bragg peak corresponding to the long range order is not seen because
it is four orders of magnitude larger than the short range order diffuse peak. The structure factor
at a later time t = 5 is also shown with triangles. A constant of 6 was added to the second slice
for clarity. The speckle patterns shown differ because they depend on the exact arrangement of the
atoms in the scattering volume which changes in time.

Note the large contrast in the structure factor. The most probable value is zero! The

spatial fluctuations of S(~q, t) are as large as the ensemble averaged structure factor

shown with a smooth solid line.

Fig. 2.8 and 2.9 show that the structure factor of a material with a random atomic

configuration is also random! It is a well known property of the structure factor1

in Eq. 2.10. For many people, this may come as a surprise, but this is observed

regularly in light scattering experiments, and was first observed more than a century

ago in the light scattering from small particles [3, 4, 5]! This effect is the same one

that causes laser speckle from reflected or transmitted light on the rough surfaces

of optical elements [6]. It is not observed in standard X-ray or neutron scattering

experiments because the beam is incoherent. In general, the speckle contrast is lost

because the sample is illuminated by many coherence volumes, or because the detector

1For example, on page 552 of Numerical Recipes [62], it is shown that the standard deviation of the
power spectrum is equal to its average. Since the structure factor is the power spectrum for spatial
fluctuations, the fluctuations in the structure factor are as large as their average! Crystallographer
have also derived an exponential probability distribution of S(~q) for random reciprocal vectors [63].
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Figure 2.10: The complex scattering amplitude F (~q) =
∑

i fie
−~q·~ri for ten atoms for a given ~q, based

on Fig. 4.2 in Ref [39]. As the number of atoms goes to infinity, the real and imaginary parts of
F (~q) become independent Gaussian random variables. The dashed line is the resulting scattering
amplitude, and the square of its magnitude is the structure factor S(~q).

resolution is insufficient to see the phenomena.

A speckle pattern is caused by coherent diffraction from random inhomogeneities

in the material adding constructively or destructively, yielding a random structure

factor. The speckle pattern is associated with the exact spatial arrangement of atoms

in the scattering volume. This makes the structure factor sensitive to the individual

realizations of a given statistical ensemble of atomic arrangements. This sensitivity

is shown clearly in Fig. 2.9 since the speckle pattern for time t = 0 completely differs

from the speckle pattern at later time t = 5.

Note also that if the crystal is perfectly ordered, the scattering is narrow and

strong but only one speckle is observed. If the scattering is broad, many speckles are

observed but the intensity of each speckle is small. For example, Fig. 2.9 is a sum of

a narrow and broad component. The Bragg peak at ~q = 0 subtends only one speckle.

The scattering from the short range order fluctuations subtends many speckles, but

its structure factor is four orders of magnitude smaller than the Bragg peak.

A speckle pattern is characterized by large spatial fluctuations from the ensemble

average. This property follows from the definition of the structure factor in Eq. 2.15.

We can represent Eq. 2.15 as a sum of random vectors in the complex plane. This

is shown in Fig. 2.10 using ten atoms. Assuming that the phase factor ~q · ~ri samples
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uniformly a range of phase difference from 0 to 2π, one can show [64], by invoking

the central limit theorem, that the real and imaginary part of the complex scattering

amplitude are independent Gaussian random variables. Since S(~q) is the sum of the

squares of the real and imaginary scattering amplitudes, which are two independent

Gaussian random variables, it can be shown1 that ρ(S) follows a negative exponential

probability distribution

ρ(S(~q)) =
exp(−S/S(~q))

S(~q)
. (2.34)

This distribution has a large contrast2 defined as the ratio of its rms fluctuations over

its average, σS/S = 1.

By observing the structure factor at a given wavevector, one can measure the

equilibrium fluctuations of the alloy. This is shown in Fig 2.11(a). Note the large

fluctuations of the structure factor as a function of time. The amplitudes of the time

fluctuations are as large as the average scattering. The structure factor fluctuates in

time with a characteristic time scale which can be determined by the time correlation

function of the time dependent structure factor. By calculating the time correlation

function of S(~q, t),

g2(~q, τ)− 1 =
<S(~q, t)S(~q, t + τ)>t −<S(~q, t)>2

t

<S(~q, t)>2
t

, (2.35)

we can measure the characteristic time of the fluctuations.

Fig 2.11(b) shows g2 for four given wavevectors. The time correlation function de-

cays faster for larger |~q|, because short length scale fluctuations are intrinsically faster

than long length scale fluctuations. The correlation functions shown in Fig. 2.11(b)

were fitted to exponential decays g2(τ)−1 = exp(−τ/τc). The inverse of the fitted cor-

relation time is shown in Fig. 2.11(c), where 1/τc = 4+2q2. One expects the structure

factor fluctuations to decay with 1/τc = M(2q2−4r) below Tc, and 1/τc = M(2q2+2r)

above Tc. The factor two comes from the fact that we are measuring intensity fluc-

tuations and not amplitude fluctuations3. This is the expected result for light with a

1See section A.1 for more details on the probability distribution of speckle.
2See for example section 4.2 in Goodman [39] or section 5.9 in Frieden [64].
3This factor of two is present in homodyne scattering. Homodyne refers to a scattering condition
where the scattered beam interferes with itself. See Ref. [12], page 60 for more detail.
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Figure 2.11: (a) The time fluctuation of the equilibrium structure factor displayed for four different
wavevectors. The simulation was performed with the thermodynamic constants κ = −r = w =
M = 1. In order to distinguish each wavevector, a constant (4,8,12) was added to the slices at
increasing wavevectors. In an incoherent experiment, only the ensemble average is observed, thus
the structure factor is constant in time. With coherent illumination, the structure factor at the
four chosen wavevectors fluctuates in time with a characteristic time τc, which can be measured by
a time correlation function defined in the text, and shown in (b). The characteristic time for the
smallest wavevector (solid line) is 0.255, while it is 0.07 for the largest wavevector (dot-dashed line).
The early decay of g2 was fitted to g2(τ)− 1 = exp(−τ/τc). (c) The inverse of the least-squares fit
correlation time 1/τc versus q2. As discussed in the text, it clearly fits 4 + 2q2.
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Figure 2.12: The probability density of the scattered intensity S(~q) for a binary alloy in equilibrium
below Tc. S(~q) was simulated with model A. The squares and triangles are respectively the proba-
bility density of S(~q) for the smallest and largest ~q in Fig 2.11. The simulation results are in perfect
agreement with the exponential distributions drawn with solid and dot-dashed lines, discussed in
the text. An exponential distribution implies that S(~q) is non-self-averaging. The inset shows that
the probability density of S(~q = 0) is nearly Gaussian, showing the scattered intensity self-averages
for ~q = 0.

Lorentzian spectrum. Here r = −1, M = 1, κ = 1, in agreement with the fits. For

systems with a conserved order parameter where the intensity fluctuations are caused

by diffusion, the inverse of the correlation time 1/τc = 2q2M(r + κq2) above Tc. The

extra q2 dependence comes from the added conservation law.

Fig 2.12 shows the equilibrium probability density of the scattered intensity, ρ(S),

calculated for model A below Tc. The probability density of S(~q) for two wavevectors

is shown. The solid lines are ρ(S) = exp(−S/<S>)
<S>

, where ρ(S) and the ensemble aver-

age of the equilibrium intensity, <S>, are calculated over 214 independent measure-

ments of S(~q, t), separated from each other by several correlation times. As discussed

above, the scattered intensity in equilibrium is non-self-averaging1 for ~q 6= 0. Note

that although the order parameter in equilibrium is self-averaging [65], the scattered

intensity is not.

As shown in the inset of Fig 2.12, the probability density of S(~q = 0) is well

1A thermodynamic variable whose relative fluctuations vanish in the thermodynamic limit is called
self-averaging. Here the time fluctuations of S(q, t) are as large as the time average of S(~q) even in
the thermodynamic limit.
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fitted to a Gaussian, with ρ(S) =
exp(−0.5(S−<S>)2/σ2

S)√
2πσ2

S

, where the standard deviation

of the scattered intensity σS = 2583, and the average intensity <S> = 96622 is

calculated from the data. Recall that S(~q = 0) = (
∫

ψ(~r)d~r)2 = M2, where M is

the magnetization of the system. The magnetization is an extensive quantity that

self-averages [65]. In equilibrium, once the system has chosen one of its two possible

phases, the relative fluctuations of the magnetization are quite small, and vanish in

the thermodynamic limit. This explains the sharp probability density of S(~q = 0).

In thermal equilibrium above Tc, where the average magnetization is zero, it can

be shown relatively easily that

ρ(S) =





1
S

exp(−S
S
), for ~q 6= 0

1√
2πSS

exp(− S
2S

), for ~q = 0,
(2.36)

where S is the equilibrium structure factor found in Eq. 2.32. In the derivation

of Eq. 2.36 for ~q = 0, one uses the facts that the probability density of M is a

Gaussian centered at zero, and that
∫∞
0 ρ(S)dS =

∫∞
−∞ ρ(M)dM . At ~q = 0, this

probability distribution has an average S, and a standard deviation
√

2S. Above Tc,

the fluctuations of S(~q) do not vanish in the thermodynamic limit.

The previous figures in this section have shown the statistics of the instantaneous

scattered intensity, S(~q, t). In all scattering experiments, the structure factor must

be integrated over some exposure time τ , and over some volume in reciprocal space.

Both spatial and temporal resolution affect the statistics of the measured intensity.

Let us first study the effect of integrating the scattered intensity over some arbi-

trary exposure time. The time-averaged structure factor is defined by

S(~q, t) =
∫ τ

0
S(~q, t + t′)dt′. (2.37)

Fig 2.13 shows the ratio of the rms fluctuations of S, σt,S, over the ensemble average

of S, <S(~q, t)>t, as a function of q2 for several τ ’s. Here the ensemble average of S

is calculated by

<S(~q, t)>t =
1

N

N∑

i=1

S(~q, ti), (2.38)
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Figure 2.13: The ratio of the standard deviation of the time-averaged intensity S over the en-
semble average. The data in Fig 2.11b were integrated over different exposure times τ =
0.025, 0.125, 0.625, 3.125. Then S was ensemble averaged to calculate its mean and variance. The
error bars were calculated with Eq. A.32, derived from standard error analysis.

and the variance of S, by

σ2
t,S

=
1

N − 1

N∑

i=1

(
S(~q, ti)−<S(~q, t)>t

)2
, (2.39)

where i = 1, 2, 3, ..., N , and ti+1 − ti = τ . In Fig 2.13, the integration times used to

calculate S(~q, t) are τ = 0.025, 0.125, 0.625, 3.125.

For small exposure times, τ << τc, the probability density of S is nearly equal to

the probability density of the instantaneous intensity S(t). This is shown in Fig. 2.13,

since σS/<S> is nearly equal to the ratio for the instantaneous intensity σS/<S> = 1

for the data with τ = 0.025. For larger exposure times the ratio departs from unity,

and one can show1 asymptotically for τ >> τc that

σt,S/<S>t ≈
√

2τc/τ . (2.40)

Note that the ratio τ/τc = Nc, the number of coherence times in one exposure time.

Eq. 2.40 states that the second moment of the integrated intensity follows the central

limit theorem for large τ , since σt,S/<S>t ∝ 1/
√

Nc. The solid line in Fig 2.13 is the

1The treatment in this section follows closely section 6.1 in Goodman [39]. The factor two in Eq. 2.40
and 2.41 is due to our definition of the correlation time in Fig. 2.11.
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exact treatment found in Goodman [39] for a Lorentzian spectrum, valid for any τ ,

where
σt,S

<S(~q, t)>t

=
(

2τc

τ
+

1

2
(
2τc

τ
)2[exp(−τ/τc)− 1]

) 1
2

. (2.41)

The agreement between the simulation results and Eq. 2.41 is excellent and well within

error1. The wavevector dependence is due to the q-dependence of the correlation time,

which ranges from 0.25 to 0.125 for q2 between 0 and 4 (see Fig 2.11). Finally, note

that the point at the origin is due to the long range order peak which is self-averaging,

thus σ/<S> = 0.0.

Finally, in any coherent scattering experiment, the detector area may average

several speckles. This averaging reduces the spatial contrast of the speckle pattern.

In section A.1, it is shown that the probability distribution of the spatially averaged

scattered intensity sharpens when N speckles are averaged in a given detector area.

The resulting spatial contrast of the scattered intensity is reduced from one, for perfect

resolution, to 1/
√

N for poorer resolution. Spatial averaging is often used in optics

to remove speckle from images obtained by the reflection of light on a rough surface.

1Some approximate expressions are derived in the first appendix on how to calculate the error bars
for different functions of the estimated mean and variance. Here, the error bars were derived in
Eq. A.32. The error bars calculated in Eq. A.32 represent quite accurately the random error caused
by evaluating the average and variance with a finite N.
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Characterization of position-sensitive detectors

The advent of high intensity X-ray synchrotron sources coupled with the development

of X-ray position-sensitive detectors (PSD) has allowed us to study time-resolved

non-equilibrium dynamics in solid-state systems. For example, one-dimensional PSD

have been used to study the isothermal crystallization of metallic glasses by measur-

ing structure factors with a time resolution of a few milliseconds [66], and to study

the early stage dynamics of order-disorder transitions in Fe3Al [67] and Cu3Au [10].

Two-dimensional PSD have been used to study the dynamics of a first order phase

transition in Cu3Au with coherent X-rays [15, 21, 25] and to determine strain kinetics

in InxGa1−xAs quantum wells [68].

To obtain meaningful quantitative data from a PSD, one must know whether the

response of the detector is linear with respect to the number of incident photons,

measure the uniformity of response over the detector area, and determine the noise,

the resolution function, and the detective quantum efficiency. For coherent diffraction

experiments[15, 25], the full spatial resolution of the detector is required, and spa-

tial and temporal correlation of the signal are the quantities to be measured. Thus

correlations inherent to the detector have to be exactly known.

In this chapter, we show how the response of a PSD can be characterized by

comparing measured averages, variances and pixel-to-pixel correlation functions to

the expected statistical estimators for Poisson counting statistics. Similar techniques

have been used previously to measure the detective quantum efficiency of a detector

[69, 70], or to evaluate the linearity constant between the PSD signal and the number

of detected photons [71, 72]. Significant spatial correlation exists between neighboring

40
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pixels for a typical PSD (see Fig. 3.2 and 3.10). We show how to extract the resolution

from the measured correlation function. The effect of a finite detector resolution,

which induces spatial correlations between neighboring pixels of a PSD, reduces the

noise of the PSD when compared to expected Poisson noise. This must be taken into

account in the evaluation of the detective quantum efficiency.

In section 3.0.3, we first discuss the case where each pixel of the detector is inde-

pendent of its neighbors. Then, we generalize this technique to include the spatial

correlation that may be present in a real one- or two-dimensional detector. Finally,

two examples are given: section 3.0.4 gives the characterization of a X-ray sensitive

linear photodiode array similar to the one used previously in our group [10, 66, 67],

and section 3.0.5 describes a more general treatment for the two-dimensional charge

coupled device (CCD) used in this work. This section is the first detailed study of

the spatial resolution function of position-sensitive detectors (PSD) in our group. It

was published recently [37].

3.0.3 Description of the technique

Description of the detection process

Solid-state PSD are typically made of an array of Si photodiodes or MOS capacitors,

which can be used as integrating detectors for X-rays. Two modes of operation of

solid-state X-ray detectors are generally used: direct X-ray illumination or optical

coupling using light produced in an X-ray fluorescent material. Direct illumination

of the detector gives the full spatial resolution of the pixels, while optical coupling

increases the detective quantum efficiency for harder X-rays and allows for changes

in the effective detector area by appropriate lenses. In this thesis, we use direct

illumination of the PSD. For silicon, 3.6 eV are required to create an electron-hole

pair [73]. A photon in the range of 5-20 keV will generate thousands of electron-

hole pairs, some of which are then collected on the Si diode capacitance. After a

preset exposure time τ , the collected charge is measured, amplified, digitized and

finally cleared for the next integration. The digitized signal V (~r, t) is an integer
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number measured in analog-to-digital units (ADU). Here ~r is a discrete one- or two-

dimensional vector pointing to the center of a given pixel of the PSD, and t refers

to the integration between time t and t + τ . The variables used are summarized

on page IX. The number of ADU per detected photon is determined by the gain of

the digitizer circuit. A so-called dark pattern must be taken without illumination

to subtract an offset signal from the data, which may vary from pixel to pixel. To

relate the detected signal to the incident intensity, one has to measure the detector

linearity, uniformity, noise, resolution and detective quantum efficiency.

Illuminating the detector with a spatially uniform source of light or X-rays allows

one to test the uniformity of the detector response. To generate this uniform source,

we scatter a beam of monochromatic X-rays from an amorphous sample (e.g. a piece

of polyimide[71, 74] or polystyrene) and place the detector far away from the sample.

To test linearity, one varies the incident flux of photons and the integration time

independently to see whether the number of photons incident on the surface of pixel

~r, integrated between t and t + τ , ni(~r, t), is the only relevant quantity. One must

find a function that relates the detected signal V to ni so that V = f(ni). In general,

f may not be linear. Therefore to linearize the detector’s signal, one would apply the

inverse of f to V . Details of this treatment are given in section 3.0.5.

We assume that the noise in the signal V has two sources: counting statistics of

the photons and an “electronic” noise from the detection process. Naturally, the noise

due to counting statistics depends on nd, the number of detected photons, rather than

on ni. In general <nd(~r, t)>t = α(~r)<ni(~r, t)>t, where α(~r) is called the detective

quantum efficiency of a pixel centered at ~r, as defined in Ref. [69, 70]. Here the

brackets refer to a time average. One finds that α < 1 because photons are absorbed

or reflected before they reach the detection volume, or because they pass the detection

volume without detection. We show how nd(~r, t) may be determined by analyzing

the fluctuations in the signal V (~r, t) for equivalent exposures.
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Technique for characterizing independent linear detectors

The detector characterization technique is based on the following idea. Due to the

nature of the detection process, nd obeys Poisson statistics, so the mean and variance

of nd are equal. (see Appendix A.1) If we assume linearity and neglect any electronic

noise contribution from the detector electronics, the signal in a detector is given by

V = knd, where k is the calibration constant, equal to the average number of ADU

per detected photon. By measuring N patterns, we can calculate the signal mean

and variance from their definitions on page IX. <V >t = k<nd>t is the mean signal.

The variance of V , S2
t,V , is equal to k2S2

t,nd
, and for Poisson noise, S2

t,nd
= <nd>t.

So the ratio S2
t,V /<V >t = k allows us to measure the calibration constant. Unless

otherwise stated, the terms mean and variance used in this paper refer to the unbiased

estimators of the true mean and variance of a given variable. Here we assumed that

the signal V in a given pixel is independent of the signal in its nearest neighbors, and

that the standard deviation of the number of photo-electrons created per detected

photon is much smaller than its average [71]. What follows is a generalization of this

idea by considering other noise sources and couplings between detectors.

For a real PSD, we found that the ratio k increases as <V >t approaches zero, due

to electronic noise contributions to the variance. This intensity dependence can be

removed by including in V the detected photons and the electronic noise contributions

so that

V (~r, t) = k(~r)nd(~r, t) + Ve(~r, t), (3.1)

and on average

<V (~r, t)>t = k(~r)<nd(~r, t)>t. (3.2)

Note that here the value of k may vary between different pixels. Ve is the electronic

noise signal, and we assumed <Ve>t ≈ 0, which is assured by the subtraction of the

dark pattern described earlier. We assume both Ve and nd are independent random

variables. The physics of this noise is discussed in detail elsewhere [70]. Here we are

only interested in the mean and variance of the noise, which are measured separately
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with the source of X-rays turned off. The time averaged variance of V (~r, t) is

S2
t,V (~r) = k2(~r)S2

t,nd
(~r) + S2

t,Ve
(~r) + 2k(~r)covt(nd(~r, t), Ve(~r, t)), where (3.3)

covt(A,B) =
1

N − 1

N∑

i=1

(A(ti)−<A>t)(B(ti)−<B>t) (3.4)

is the covariance of two random variables A and B. From the assumption of in-

dependence, covt(nd, Ve) ≈ 0. Dividing Eq. (3.3) by Eq. (3.2), and recalling that

S2
t,nd

(~r) = <nd(~r, t)>t for a Poisson distribution (see Appendix A.1), one finds that

k(~r) =
S2

t,V (~r)− S2
t,Ve

(~r)

<V (~r, t)>t

. (3.5)

To determine an estimate of the ratio of ADU to detected photons for each pixel,

one evaluates the mean and variance for each pixel based on N scans, subtracting a

measured dark variance S2
t,Ve

from the signal variance. The subtraction of S2
t,Ve

in Eq.

(3.5) makes the ratio k intensity independent for a real PSD, as the average signal

goes to zero. Once k(~r) is known, α(~r) can be calculated after measuring ni(~r, t) with

a detector with near unit quantum efficiency. The detective quantum efficiency may

then be calculated as

α(~r) =
<V (~r, t)>t

k(~r)<ni(~r, t)>t

. (3.6)

The spatial variations of the detector array appear as variations in k(~r), or detector

to detector variations. In order to determine whether these fluctuations are significant,

the error in k(~r) expected from Poisson and electronic noise has to be considered. The

uncertainty in the determination of k(~r) depends on the number of measurements N .

From standard error propagation analysis (see the derivation in the Appendix), we

estimate the expected error in k, σk(~r), by

σ2
k(~r)

k2(~r)
≈ 2

N − 1

(
1 +

S4
t,Ve

(~r)

k2(~r)<V (~r, t)>2
t

)
+

S2
t,Ve

(~r)

<V (~r, t)>2
t

(
1

N
+

1

Nd

)
. (3.7)

Here, we used S2
t,V −S2

t,Ve
= k<V >t to simplify Eq. (A.30). Nd is the number of scans

used to determine the average dark pattern. Eq. (3.7) is made of four terms: the first

term 2/(N − 1) is the error due to counting statistics (see Eq. (A.27)) and the last

three terms containing S2
t,V e and S4

t,V e are due to the electronic noise.
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To minimize the error, one should take N as large as possible to reduce the error

due to counting statistics. This is achieved by taking a small exposure time τ . As τ

and V approaches zero, the minimum error is reached when both noise contributions

to σk are equal. For smaller τ , σk increases due to the electronic noise. As a rule of

thumb, one should measure Nd = N dark patterns, so that the average dark pattern

is measured precisely. To get a relative precision ε = σk/k, one should choose τ such

that the detected signal V ≈
√

S2
t,Ve

{
1 + S2

t,Ve
/k2

}
, and measure N ≈ 4/ε2 scans with

and without X-rays.

For count rates available at synchrotron sources, one may find that the signal

obtained for the finest time resolution τ is always much larger than the dark noise.

Then fewer dark patterns need to be measured. For large signals <V >t >>
√

S2
Ve

and for N >> Nd, σk ≈ k
√

2/(N − 1) + S2
Ve

/(Nd<V >2
t ). When <V >t >> Vm =

√
S2

Ve
N/(2Nd), σk ≈ k

√
2/(N − 1), and counting statistics is the dominant contribu-

tion to the error. In Fig. 3.1b for example, the signal in the central pixels of the array

is within this limit since Vm = 66 ADU. For V < Vm, σk is dominated by the detector

electronic noise.

As mentioned above, this treatment assumed that each pixel is independent of its

neighbors. If this is not true, this correlation reduces the variance, and k(~r) is not

the number of ADU per detected photon. This case is discussed next.

Treatment including pixel-to-pixel correlations

To understand the effect of couplings between detectors, we consider first a toy model

for a one-dimensional PSD, where two neighboring pixels share some fraction x of their

signals. Following the previous notation, replacing ~r by an integer index i, the signal

in the ith pixel, V (i, t), is defined by

V (i, t) = (1− x)knd(i, t) + xknd(i + 1, t), (3.8)

where k is the number of ADU per detected photon, and nd(i, t) is the number of

photons measured by an independent detector if x was zero, and it is assumed that

0 ≤ x ≤ 0.5. The case for x 6= 0 occurs in real PSD because the charge created by
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photons is shared by adjacent pixels. This coupling affects the statistics of the signal.

For a spatially uniform exposure, <nd(i, t)>t and <nd(i+1, t)>t are the same within

counting statistics, and <V (i, t)>t equals on average knd, where nd is the mean of the

probability density of nd. For two independent Poisson distributed random variables,

nd(i, t) and nd(i+1, t), with <nd(i, t)nd(i+1, t)>t= <nd(i, t)>t<nd(i+1, t)>t= nd
2,

the variance of V (i, t) is

S2
t,V (i) = <V (i, t)2>t−<V (i, t)>2

t = k2
{
(1− x)2 + x2

}
nd. (3.9)

By letting x = 0, we recover the case discussed in section 3.0.3. For a finite x, the

variance is always smaller than the variance of uncoupled detectors as (1−x)2 +x2 ≤
1 for 0 ≤ x ≤ 0.5. Now S2

t,V (i)/<V (i, t)>t = k{(1 − x)2 + x2}, so that from a

measurement of this ratio alone, k cannot be extracted. A second measurement is

needed in order to solve for k and x.

The resolution function could be measured to determine x, by illuminating only

one pixel with a source which is smaller than the pixel size. For a PSD, this re-

quires collimating the X-ray beam through a pinhole with a diameter of only a few

micrometers, and scanning the pinhole over the detector area. This technique may

be difficult to apply, because one needs an intense X-ray source to generate a us-

able micrometer beam and a translation system with micrometer resolution. The

measurements of pixel-to-pixel correlation offer a useful alternative for measuring the

resolution function. In this model, the measured covariance of V (i, t) and V (i + 1, t)

is given by

covt(V (i, t), V (i + 1, t)) = <V (i, t)V (i + 1, t)>t−<V (i, t)>t<V (i + 1, t)>t

= x(1− x)k2nd, (3.10)

which gives k = (2covt+S2
t,V )/<V >t and x = 1/2−1/2

√
(S2

t,V − 2covt)/(S2
t,V + 2covt).

Next nearest neighbor pixels can also be coupled due to the diffusion of photo-

electrons far away from the absorption site. To measure these distant correlations, a
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general correlation function between V (~r, t) and V (~r + ~∆, t) is defined as

C(~r, ~∆) =
covt(V (~r, t), V (~r + ~∆, t))√

S2
t,V (~r)S2

t,V (~r + ~∆)
, (3.11)

where the averages and variances are defined on page IX, and ~∆ is the relative dis-

placement between the pixels. Two limiting cases in this definition may be calculated

easily. For large ~∆, V (~r, t) and V (~r + ~∆, t) are independent, and C(~r, ~∆) = 0. For

~∆ = 0, C(~r, 0) = 1 since the numerator becomes identical to S2
t,V . If the signal

between neighbors is not independent, one finds in general −1 < C(~r, ~∆) < 1.

To estimate the resolution function and its effect on the measured noise, we now

include all pixel-to-pixel couplings. Developed for shot noise processes [64], the model

describes a stochastic process created by random superposition of a constant response

function h(~r′) for each photon1. The function h(~r′) describes the spread of the signal

in the detector. The measured signal at pixel ~r, V (~r, t), is a sum of disturbances

which hit the detector at random positions ~ri,

V (~r, t) =
nd∑

i=1

h(~ri − ~r). (3.12)

In our case, nd is the number of detected photons between time t and t + τ , sampled

from a Poisson distribution. The ~ri are chosen from a uniform distribution since the

signal is assumed to be spatially uniform. The model can be generalized to include

spatial variations in the incident signal [64], and the results will not depend on the

fact that h may vary with each photon if the variance of h is small enough. The

model further assumes that h(~r′) is the same for each pixel and that the signal in a

given detector is not correlated in time. A complete derivation of the moments of V

is given in detail in Ref. [64]. It is shown that

<V (~r, t)>t = <nd(~r, t)>t1/L
d

∫
h(~r′)d~r′

d
, (3.13)

1In a real PSD, h may depend on where the photon is absorbed on the area of the pixel, and
on how deep it is absorbed. Furthermore, the probability for a photon of being absorbed varies
exponentially with depth. Here we assume the response h independent of the exact position of the
photon absorption. This is the simplest model for describing the spread of the signal to several
pixels. It could be generalized in a straightforward manner.
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S2
t,V = <V 2(~r, t)>t −<V (~r, t)>2

t = <nd(~r, t)>t1/L
d

∫
h2(~r′)d~r′

d
, (3.14)

C(~r, ~∆) =
<V (~r, t)V (~r + ~∆, t)>t −<V (~r, t)>2

t

S2
t,V

=

∫
h(~r′)h(~r′ + ~∆)d~r′

d

∫
h2(~r′)d~r′

d , (3.15)

where Ld is the linear size or area of a detector in d = 1, 2 dimensions. <V (~r, t)>t, S2
t,V

and C(~r, ~∆) can be estimated from repeated measurements, and <nd>t can be solved

from these equations with an appropriate model for h(~r′). Choosing h(~r′) = kδ(~r′),

we recover Eq. (3.5) from the ratio of Eq. (3.14) and (3.13). Here, the model is

further simplified by assuming that h(~r′) is discrete, and replacing integrals by sums.

To recover Eq. (3.9,3.10) from Eq. (3.13-3.15), let h(0) = k(1 − x), h(1) = kx, and

h(~r′) = 0, for |~r′| > 1. Using the measured spatial autocorrelation function, one can

often evaluate the resolution function h(~r′) by inverting Eq. (3.15). From Eq. (3.13),

one can calculate nd from <V (~r, t)>t. Then Eq. (3.6) becomes

α =
Ld<V >t

<ni>t

∫
h(~r′)d~r′

d . (3.16)

Good statistics for the measured autocorrelation functions can be in principle ob-

tained by correlating the signal from thousands of scans. If no time correlation exists

and one expects the detectors to be almost identical, one can save this effort by

taking a spatial average and variance over detectors of a single uniform scattering

pattern instead of time averages. One can get excellent statistics from a single scan

of a 500× 500 CCD array by averaging over the 250000 pixels. In the two examples

discussed next, direct measurements showed no time correlation of the signals. For

our detectors, we found that a time average and a spatial average are quantitatively

similar, both for means and variances. Time averages or spatial averages can thus be

interchanged for convenience.

3.0.4 Characterization of a linear PSD

The photodiode array used contains 2048 rectangular pixels with 25µm wide and

2.0mm high active areas. The resolution is specified as 1.5 pixels wide so there will be

some correlation between pixels. It is operated at −40◦C, cooled by a Peltier stage,

to reduce the electronic noise. The array is operated by a Princeton Instrument
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EG&G Reticon 2048SAU-822. TI 4849 CCD.

Array size 2048 pixels. 390 by 584 pixels.

Pixel dimension 25µm wide, 2.0mm high. 22.4 × 22.4 µm.

Specified resolution 1.5 pixels. 2 pixels.

Characteristic length diffusion length 50µm. depletion layer 12µm.

Window 250µm Be window, 1µm SiO2 overcoat. 250µm Be window.

Amplifier gain 1 ADU/1300 electrons. adjustable.

Readout time 4µs/pixel, 8ms for the array. 6 µs/pixel, 1 s for the array.

Readout noise < 1.2 ADU rms. 20 electrons/pixel.

Integration time 8ms to two hours. a few µs to minutes.

Table 3.1: Position-sensitive detector characteristics

ST1000 controller and the data were transferred to a IBM PC 386-AT through a

custom designed I/O board from PI. Software is provided with the package to control

the data acquisition parameters, store the data and visualize the data. Scans can

be accumulated by a 32 bit register and pixels can be grouped to increase the scan

rate while sacrificing the spatial resolution. Further characteristics of the detector

are summarized in Table 3.1.

Fig. 3.1 shows some experimental data obtained for the linear array. As defined

on page IX and Eq. (3.5), the mean, variance and ratio of variance over mean of V

are plotted for every 20th pixels of the array at two different X-ray energies, 6.93 and

8.05 keV. The first data set was obtained by scattering 6.93 keV X-rays onto a Bragg

peak of Fe3Al, constant in time. 100 scattering patterns were averaged. Note that the

mean is quite smooth (i.e well defined to within 0.3%) but that the fluctuations on

the variance are substantial ( 14%). For N = 100 measurements, the relative error on

the mean is 1√
Nnd

with nd ≈ 1000, while the relative error on the variance is
√

2
N−1

.

The error bars on the ratio were calculated from Eq. (3.7). A least squares fit of k(~r)

to a constant, weighted with error bars calculated from Eq. (3.7), yields k = 0.682

and a χ2 of 1.1.
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Figure 3.1: a) time averaged signal <V (~r)>t, variance S2
t,V (~r), and calibration constant k =

S2
t,V /<V (~r)>t versus pixel number for 6.93 keV X-rays, N = 100, Nd = 1. The error bars for

the mean, variance and ratio are calculated from formulas discussed in section 3.0.3 and the ap-
pendix. b) same as above, but with 8.05 keV X-rays, N = 8000, Nd = 1.
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Figure 3.2: Spatial average of C(i, ∆), as defined in Eq. 3.11, versus ∆. Each point was calculated
from an average over all pixels of C(i, ∆), shown in the inset for ∆ = 1.

To determine the uniformity of k(~r), 8000 patterns were measured and analyzed.

Fig. 3.1b was obtained by scattering 8.05 keV X-rays, coming from of an X-ray tube

with a Cu target and a Ge (111) monochromator set on Cu Kα. The beam covered

approximately half of the array. The small tails on the average are due to diffuse

scattering. Note the logarithmic axes for the mean and the variance; the signal varies

over three orders of magnitude but the ratio is essentially independent of signal level.

A dark variance of 1.1 ADU2 causes the large fluctuations in k(~r) when the X-ray

signal is comparable to the electronic noise signal. Measuring more dark patterns

(larger Nd) would reduce the error on k. A least-square fit of the ratio to a constant

between pixel 650 to 1400 gives k=0.792 and a χ2 of 2, indicating the possibility

of systematic variations in pixels with an rms amplitude of 2%. Note that a large

number of identical exposures have to be analyzed to detect fluctuations this small. If

signal variations between pixels of the order of a few percent are important, then these

fluctuations have to be taken into account by using a different calibration constant

for each pixel. Note that the number of electron-hole pairs created is proportional to

the photon energy. This is reflected in the two different values of k, 0.682 and 0.792,

at 6.93 and 8.05 keV respectively.
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The inset of Fig. 3.2 shows the autocorrelation function of V (~r, t) as calculated

from Eq. (3.11) for nearest neighbor coupling (∆ = 1). Here ~r has been replaced by

an integer index for the one dimensional detector. The spatial average of the correla-

tion function, <C(i, 1)>i = 0.2201 ± 0.0004. The spatial variance of the correlation

function, S2
i,C = (1.21±0.06)×10−4, agrees well with the expected variance (see [62] p

626) of 1/N , where N is the number of scans averaged. Within error, C(i, 1) is equal

for all pixels. For larger ∆, we found <C(i, 2)>i = 0.0319, <C(i, 3)>i = 0.0062,

<C(i, 4)>i = 0.0012 and <C(i, 5)>i = 0.0004, all measured within ±0.0004. The

technique is very sensitive, since we can measure very small correlations between

pixels separated by 100 µm. Fig. 3.2 shows <C(i, ∆)>i versus ∆. The decay of

the correlation function is approximately exponential, which is consistent with the

diffusion of the electric charge to neighboring pixels [75].

As discussed in section 3.0.3, the resolution function h(i′) is evaluated from Eq.

(3.13-3.15), based on the assumption that only h(0), h(−1) and h(1) are non-zero,

and that h(−1) = h(1) = h1. Replacing the integrals by sums in Eq. (3.13-3.15), one

finds that

k =
S2

t,V

<V >t

=
(h2

0 + 2h2
1)

(h0 + 2h1)
= 0.792, and (3.17)

<C(i, ∆ = 1)>i =
(2h0h1)

(h2
0 + 2h2

1)
= 0.2201, (3.18)

which gives h0 = 0.947 and h1 = 0.107. To transform the signal V to detected

photons, one must divide V by
∫

h(~r)d~r = h0 + 2h1 = 1.16 instead of by k. The above

model reproduces the essential features but does not give the next nearest neighbor

correlation correctly. With this model, <C(i, 2)>i = h2
1/(h

2
0 + 2h2

1) = 0.012, which is

lower than the observed correlation. This can be fixed by extending the range of the

response function to the third neighbor 1.

The detective quantum efficiency was evaluated by measuring ni with a scintillation

1The simplest model fitting all data points requires four parameters. By including h2 and h3 in the
model, we can solve simultaneously the equations for the ratio and for the five correlation functions

using a non-linear least squares fit program. Eq. (3.17) becomes k = S2
t,V

<V >t
= h2

0+2h2
1+2h2

2+2h2
3

h0+2h1+2h2+2h3
=

0.792, Eq. (3.18) is rewritten <C(i, ∆ = 1)>i = 2h0h1+2h1h2+2h2h3
h2
0+2h2

1+2h2
2+2h2

3
= 0.2201, and so on. One then

finds h0 = 0.964, h1 = 0.108, h2 = 0.0095 and h3 = 0.002.
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counter masked by a 1.3 mm hole, and then <V >~r was measured by centering the

height of the PSD behind this hole. Using Eq. (3.16), we find α = 37±2 % for 8.05 keV

X-rays. This can be compared to the expected detective quantum efficiency estimated

for transmission through the 250 µm Be window of the detector, transmission through

an additional 1 µm SiO2 overcoat and the fraction of absorbed X-rays in the electron

diffusion length of the Si, tSi,

α = exp(−µBeρBetBe) exp(−µSiO2ρSiO2tSiO2)[1− exp(−µSiρSitSi)]. (3.19)

Using the mass absorption coefficients1 1.1, 36.4, 64.7 cm2/g for Be, Si and SiO2 re-

spectively at 8.05 keV, and densities of 1.85, 2.32, 2.21 g/cm3, and a diffusion length

tSi = 50µm as specified by the manufacturer2, this estimate gives α = 50%, and

agrees reasonably well with the measured value.

3.0.5 Characterization of a CCD array

The principle of photon detection of a CCD is similar to the linear array described

in section 3.0.3. In a CCD, the detected charge is stored in MOS capacitors and read

by a series of parallel row transfers and serial pixel-to-pixel transfers. For coherent

X-ray experiments [15, 25], we used a virtual phase architecture TI 4849 chip, with

390 × 584 22.4 µm wide square pixels. The depletion depth of the chip is 12 µm,

which gives a sufficient detective quantum efficiency for direct X-ray illumination.

Further detail is given in Table 3.1 and elsewhere [76, 77, 78, 79]. To characterize

the detector, measurements were made at the high brilliance wiggler beamline X25 at

NSLS with a Si (111) monochromator set at 7.0 keV. Fig. 3.3 shows the experimental

set up.

The ratio k = S2
~r,V /<V >~r is shown in Fig. 3.4 as a function of <ni>~r. For a

detector with a linear response, k is a constant, independent of ni. We were quite

surprised to see a non-linear relationship for k because the response to visible light

1The constants were obtained from an online database called the Nuclear Data Center, at Brookhaven
National Laboratory. To get data, telnet to bnlnd2.dne.bnl.gov, username nndc, and search the X-
ray absorption database.

2See the technical information sheet on the RL2048S Solid State Line Scanner 2048 Elements, EG&G
Reticon, 345 Potrero Avenue, Sunnyvale, California 94086-4197
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Amorphous scatterer

CCD array or scintillator

7 keV photons

Ion chamber

Figure 3.3: Experimental set up for the characterization of the CCD array. The X-ray beam was
scattered with a piece of polystyrene to produce a spatially uniform exposure[71, 74]. The detector
was centered at a scattering angle of 2Θ = 23◦ and placed 1.04 m from the center of rotation. ni

could be varied by detuning the monochromator, and therefore modifying the incident flux, or by
varying the integration time τ from 1 to 240 s. An ion chamber was used to monitor the incident
intensity on the sample, and a scintillation detector, masked with a 4 mm circular aperture, was
placed at the CCD position and allowed us to determine ni. This way, the scintillator signal was
used to calibrate the ion chamber signal (Imon). Using the ratio of areas and counts, the count rate
per pixel was obtained, based on Imon. The highest count rate was 1 photon/(22.4 µm)2/sec.

had been measured to be linear to within 0.5 % [76, 77, 78, 79]. It was later discovered

that an inappropriate amplifier was responsible for the non-linearity. When recently

tested with the correct operating electronics, the response to X-rays was linear. Since

the model used in section 3.0.3 assumes linearity, it will be generalized below to

include a non-linear response.

A treatment for non linear detectors

In many X-ray scattering experiments, one needs to determine ni instead of nd. This

is done by calibrating the response of the PSD, V , for different ni. Fig. 3.5 shows the

mean of the CCD response over a region of 100 × 100 pixels, <V >~r, versus ni. The

calibration was checked ten days later and remained mostly unchanged. The response

of the detector depends only on ni, since all the data points with an equal integrated

flux Imonτ fall on the same line in Fig. 3.5 although they differ widely in exposure

times and incident flux. Several functions were tried to obtain an analytic relation
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Figure 3.4: k = S2
~r,V /<V >~r versus the incident integrated intensity on the detector <ni>~r. The

average and variance were calculated over a region of 100 by 100 pixels. The solid line is a least
squares fit.

Figure 3.5: Spatial average of the signal V (~r, t) over a region of 100 by 100 pixels versus the number
of photons incident on the surface of a pixel <ni>~r. Two data sets taken ten days apart (squares and
triangles) are shown. The solid line is a least squares fit to the first calibration with ni = 0.35V 0.84.
This function is applied to the measured signal to linearize it. V was less than 75% of the saturation
value for all points.
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Figure 3.6: The spatial variance of the linearized data measured in a region of 100 by 100 pixels
versus the linearized signal. One would expect the variance S2

~r,v∗ to go as <ni>~r in the case of a
simple Poisson law (solid line). The dotted line is 1.63<ni>~r.

for the CCD response. The solid line in Fig. 3.5,

ni = f−1(V ) = 0.35V 0.84, (3.20)

is the best least squares fit found. This function allows one to linearize the measured

signal V with sufficient accuracy.

The linearized signal, v∗, is defined by v∗ = f−1(V ). It has the same units as ni,

but its statistic is different from the Poisson statistic of ni. In order to determine the

noise in the linearized signal, we evaluated the spatial variance of v∗, S2
~r,v∗ , in a region

of 100× 100 pixels versus ni (see Fig. 3.6). The solid line is the relation expected for

a Poisson distribution (S2
~r,v∗ = <ni>~r), while the dotted line is S2

~r,v∗ = 1.63<ni>~r.

The variance is larger because the spatial resolution of the CCD is larger than the

area of a pixel, and α is smaller than one.

Fig. 3.7 shows averages of a single exposure of V (~r, t) taken over columns and

rows of the detector. Pixels which are in the rows 110 to 480 and columns 10 to 380,

which represent most of the detector area, are used for the averages. The mean is

uniform in both directions with rms fluctuations of 2 %. Fig. 3.8 shows a bitmap of the
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Figure 3.7: (a) Signals summed over 370 rows (top) and 370 columns.

variance S2
t,V , calculated from 23 frames, each exposed for 1 s. The variance is uniform

over the whole detector area, except for a few bad columns in the parallel transfer

direction (y axis), where the variance is significantly lower. Pixels in columns 26-

28,72-73,181-182, 208-209, have 40 to 80% less than average variance. This is shown

in Fig. 3.9, where the average of S2
t,V over row 420 to 520 is displayed as a function

of the horizontal position. A similar average of <V >t is shown for comparison. The

mean only fluctuates by a few percent. It is important to measure the noise of each

pixel to fully characterize the detector.

The resolution function is extracted from the spatial correlation C(~∆), defined by

C(~∆) =
<(v∗(~r, t)v∗(~r + ~∆, t)>~r −<(v∗(~r, t)>2

~r

S2
~r,v∗(t)

, (3.21)

where the displacement ~∆ is measured in units of pixels. This definition is similar to

Eq. 3.11. Sufficiently good statistics can be achieved based on a single exposure of the

CCD. A fast calculation algorithm may be used 1. Knowledge of C(~∆) is necessary

for coherent X-ray experiments, where one is interested in the speckle size, which is of

the order of the pixel dimensions [25]. Fig. 3.10 shows two slices of C(∆x, ∆y), where

1We use a standard fast Fourier transform (fft) algorithm to calculate the spatial autocorrelation
function, described in Ref. [62], Chapter 12. C(~∆) = fft−1(fft(v∗)fft∗(v∗)), where fft(v∗) is the
complex fft of v∗.
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Figure 3.8: Time averaged variance S2
t,V (~r) of the pixels in row 20 to 520 and column 10 to 380. 23

exposures of one seconds each were averaged. An inverted grey scale is used to display the data. On
the top scale, the spatial average and the standard deviation of S2

t,V (~r) are marked. Note that the
variance is relatively uniform except for pixels in certain columns, where the variance is much lower.
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Figure 3.9: Average of S2
t,V (~r), calculated over a column between row 420 and 520 of the CCD,

shown versus the index of the column. The pixels in columns 26 to 28, 72 to 73, have much lower
variance than other pixels. <V >t is shown for comparison. The mean shows typical behavior for
these columns. It is important to measure the variance of the signal of each pixel when one performs
intensity fluctuation spectroscopy with a CCD.

the first index refers to the columns and the second to the rows of the CCD array.

The correlation function C(∆, 0) decays more slowly than C(0, ∆), i.e the resolution

is worse along the serial transfer direction than along the parallel transfer direction.

The correlation coefficients are non-zero for the nearest and next nearest neighbors

of C(0, 0), with C(1, 0) = 0.52±0.05, C(0, 1) = 0.12±0.01 and C(1, 1) = C(−1, 1) =

0.07 ± 0.02. Note that C(~∆) = C(−~∆), based on Eq. (3.21). Thus the resolution

function has a range of one to two pixels. Using the simplest model, we choose h(~r) to

be non zero only for the nearest neighbors, i.e. h(0, 0) = h00, h(1, 0) = h(−1, 0) = h10

and h(0, 1) = h(0,−1) = h01. We choose to normalize the integral of h(~r) to unity,

assuming that one photon will be distributed amongst several pixels so that

h00 + 2h10 + 2h01 = 1. (3.22)

From Eq. (3.15), the correlation function of this disturbance gives

C(1, 0) =
2h00h10

h2
00 + 2h2

10 + 2h2
01

= 0.52, and (3.23)

C(0, 1) =
2h00h01

h2
00 + 2h2

10 + 2h2
01

= 0.12. (3.24)
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Figure 3.10: Two perpendicular slices of the space autocorrelation function, defined by Eq. (3.21),
for uniform scattering data. C(∆, 0) for the serial transfer direction (circles) and C(0, ∆) for the
parallel transfer direction (squares) are shown versus ∆. The error bars are slightly larger than
the size of the squares. The correlation decays to 0 in about two pixels along x, the serial transfer
direction, and in one pixel perpendicular to it.

Solving Eq. (3.22-3.24), we find h00 = 0.563, h01 = 0.042, h10 = 0.177. A larger

fraction of the signal leaks to the nearest neighbors along the serial transfer direction.

The resolution function alters the variance of the number of detected photons.

From Eq. (3.13,3.14), one finds

Ks ≡
S2

~r,nd

<nd>~r

= h2
00 + 2h2

10 + 2h2
01 = 0.38. (3.25)

Without leakage, Ks = 1, so that the variance is smaller than what one expects from

Poisson noise by a factor Ks. Using <nd(~r)>~r = α<v∗(~r)>~r, assuming that α is the

same for each pixels, one gets

S2
~r,nd

= α2S2
~r,v∗ = Ksα<v∗>~r. (3.26)

From a Taylor expansion of the linearization function, v∗ = f−1(V ), one obtains

S2
~r,v∗ = S2

~r,V (dv∗/dV )2, (3.27)

where S2
~r,v∗ is the variance of the linearized data. Recalling that for the linearization

function, dv∗/dV = B<v∗>~r/<V >~r and substituting Eq. (3.27) into Eq. (3.26), one
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gets
S2

~r,V

<V >~r

=
Ks<v∗>~r

α<V >~r(dv∗/dV )2
=

Ks<V >~r

α<v∗>~rB2
, (3.28)

where B is the exponent of the power law fit in Fig. 3.5 equal to 0.84. This equa-

tion includes three different contributions in the ratio: the smearing from the finite

resolution, the non-linear behavior and the detective quantum efficiency. For a linear

detector (B = 1), with a resolution of one pixel area (Ks = 1), Eq. (3.28) becomes

equivalent to Eq. (3.6). Therefore
S2

~r,V

<V >~r
is not constant (see Fig. 3.4), since <V >~r

<ni>~r

is non-linear. Fitting the measured CCD response in Fig. 3.4 to Eq. (3.28) gives a

detective quantum efficiency α = 0.22. Eq. (3.19), with the values µSi = 94.9 cm2/g,

µBe = 1.6 cm2/g, tSiO2 = 0 µm and tSi = 12 µm, gives α = 0.22, which agrees well

with the measurement. Furthermore, Eq. (3.26) gives Ks/α = 1.5, which corresponds

to the ratio of S2
~r,v∗/<v∗>~r in Fig. 3.6.

3.0.6 Discussion

One must carefully characterize the response of a current state-of-the-art PSD to ob-

tain quantitative information. For example, in the intensity fluctuation spectroscopy

experiments reported in this thesis, it is essential to distinguish the noise of the de-

tector from measured scattered intensity fluctuations, and we must know the spatial

correlations of the detector’s resolution function quite accurately. We have shown

that we can characterize a PSD by measuring means, variances, and spatial auto-

correlation functions and comparing these measurements to the statistical estimators

expected for a Poisson distribution. The technique can measure the resolution func-

tion, and gives an estimate of the detective quantum efficiency. It is easy to implement

and can be very sensitive when enough scans are averaged. The mean and variance

arrays are easily calculable in real time by storing only three arrays in memory1.

The technique can also handle detector non-linearities. Before this study, previous

1Only three arrays are required. Storing the first pattern as an offset array V (t0), we store in two
arrays the difference A1 =

∑i=N
i=0 (V (ti)−V (t0)) and the square of the difference A2 =

∑i=N
i=0 (V (ti)−

V (t0))2. Then, the mean <V >t = A1/N + V (t0) and the variance S2
t,V = (A2 − A2

1/N)/(N − 1).
This algorithm minimizes the roundoff error (see Ref. [62] p 613), and minimizes the disk space
required for the calibration. Similar sums can be taken for calculating the correlation function in
Eq. 3.11.
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work in our group assumed that linear PSD have a resolution of one pixel. In future

high resolution experiments, the finite resolution of the detector should be taken into

account.

A simple extension of the technique would be to measure the decay of the time

correlation function of the CCD signal, when the detector is optically coupled to an

X-ray fluorescent material. The advantage of using the correlation function here is

that no special hardware, such as a fast shutter, is required for the experiment.
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Experimental method

4.1 Beamline characterization and optics

The experiments reported in this thesis were performed at the National Synchrotron

Light Source (NSLS) at Brookhaven National Laboratory and at the Cornell High

Energy Synchrotron Source (CHESS) during a test of the Advanced Photon Source

(APS) undulator. Fig 2.4 shows a typical experimental setup.

The X25 beamline has been described in detail elsewhere [80, 81]. In short, the X-

rays are generated by a 27 pole hybrid wiggler with a peak field of 1 T, installed on a

straight section of the 2.5 GeV NSLS storage ring. This wiggler source is characterized

by a deflection parameter K = 12.3, a characteristic opening angle K/γ = 2.5 mrad,

and a critical energy of 4.6 keV. With a ring current of 230 mA, this source generates

a total power of 1.8 kW. For our experiment, the gap was set at 24 mm.

The characteristic distances at X25 are shown in Table 2.1. To control the coher-

ence lengths, two sets of upstream slits at 10.5 m from the source could be closed to

reduce the effective source size. A double Si(111) monochromator was used to select

6.9 keV X-rays. The monochromator was slightly detuned from the Bragg condition

to filter the third harmonic out. Two types of incident intensity monitors were used:

an air filled ion chamber and a film of polyimide oriented at 45 ◦ from the incident

beam, which scatters X-rays into a scintillation counter. Since the absorption length

of 6.9 KeV X-rays in air is of the order of 0.5 m, vacuum flight paths were used to

reduce X-ray absorption.

To ensure that the beam incident on the sample remained approximately defined

63
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by the pinhole diameter, we placed the sample in the near field diffraction region of

the pinhole [82] such that the pinhole to center of rotation distance

Rc < D2/λ, (4.1)

where D is the pinhole diameter. For the smallest pinhole used, D = 3.5 µm and

λ = 1.797 Å, which gives the condition Rc < 6.8 cm. The input pinholes were placed

at Rc = 6.75 cm, which is well within the near field of the pinhole diffraction pattern

for the measurements done with the 7.5, 15, 33 µm pinholes, but is on the edge of this

region for the 3.5 µm pinhole. This is the closest distance achievable for our X-ray

oven.

To determine and control the transverse coherence lengths, one must know the

source size accurately. At X-25 the source size was measured by scanning the upstream

x-y slits (see Fig. 2.4) to cut the beam totally while recording the intensity at the

sample position behind a 3.5 µm pinhole. The beam profile is obtained by taking

a derivative of the signal. The beam profile is then least-squared fitted using a

Gaussian at the slit position, 10.5 m from the source. The horizontal and vertical

fitted widths1 are respectively σx = 0.386 mm, σy = 0.0179 mm at 6.9 keV. Since

the point of observation is 27.8 m from the source, the source size near the wiggler is

σx = 0.62 and σy = 0.0288 mm.

The CHESS synchrotron ring was operated at 5.437 GeV, with a maximum current

of 100 mA [83]. The undulator was a prototype of the APS undulators. This undulator

is made of 123 magnetic poles with 3.3 cm periods, and its fundamental energy can be

tuned from 4.3 to 7.9 keV [83]. The undulator gap was set at 2.3 cm in order to tune

to the 7 keV fundamental. The double Si (111) monochromator was set to diffract

7.0 keV X-rays. Since the source horizontal size dsx = 2.55 mm is approximately twice

larger at CHESS compared with X25, a 0.4 mm horizontal slit was placed 17.8 m from

the source to limit the horizontal source size.

1The Gaussian fit used was I(x) = I0exp(−.5(x − x0)2/σ2
x)), where x0 is the peak center, σx the

width, and I0 the peak intensity.
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Figure 4.1: The X-ray oven.

4.2 Sample preparation and sample furnace

The sample preparation at the Oak Ridge National Laboratories has been previously

described in detail [31, 32]. The sample surface normal is oriented along the [100]. A

vacuum sample chamber was designed to heat the sample to elevated temperatures

and to prevent its oxidation. The sample furnace essential element is a 6Ω pyrolytic

Boron Nitride coated pyrolytic graphite heater1 mounted on a water cooled Cu heat

sink which gives sufficient cooling power to quench the sample rapidly. The sample

was mounted on the heater using stainless steel clamps screwed on the Cu block. With

this design, quench rates of a few Kelvin per second could be easily attained. The

maximum temperature reached by this oven could be adjusted by thermally insulating

the back of the heater and the Cu heat sink with varying thicknesses of mica. The

mica limits the heat flow to the heat sink and increases the temperature difference

between the heater and Cu block. A commercial proportional temperature controller

(Omega CN8031) was used to maintain the set point temperature constant to within

0.1◦C using a standard proportional, integral and differential control loop. Two type-

K thermocouples recorded the sample temperature and the control temperature. A

1The heater is a 2 cm diameter BoralectricTM PBN/PG resistance heating element, purchased from
Union Carbide Coatings Service Corporation, P.O Box 94924, Cleveland, OH, USA, 44101-4924.
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standard cold junction compensator (Omega-CJ-K) was used to set the ice point

reference of the sample thermocouple. The thermocouples were held in contact with

the sample by the clamps. The X-rays could penetrate the sample chamber through

a 180 degree Be window, 0.015 inch thick1. A DC power supply, controlled by the

temperature controller through an operational amplifier input, generated a current

from zero to six A which is required because of the small heater resistance.

4.3 Scattering geometry

Fig. 4.2 shows the scattering geometry for this experiment. The CCD or the scintil-

lator is mounted on a standard 4 circle Huber diffractometer, computer controlled to

scan the three sample angles θ, φ, and χ, and the central detector angle 2θ, which

defines, with the incoming beam direction, the scattering plane. The scattering plane

is vertical. The sample is mounted on the φ circle of the diffractometer, and the four

angles are set for the (100) reflection.

Because the CCD is able to measure outgoing wavevectors in two directions, we

use the central pixel to define a scattering plane. Thus, 2θ⊥ is the angle perpendicular

to the plane, and 2θ‖ is in the plane. Here 2θ‖ is like the usual detector angle. In

Fig. 4.2, θi is the angle of incidence of the X-ray beam with respect to the surface.

Following Ref [16], one can show that the components of the scattering wavevector

~q = ~kf − ~ki in the sample coordinates are

qx = k sin 2θ⊥ ≈ kx′/Rd,

qy = k(cos 2Θ⊥ cos(2θ‖ − θi)− cos θi) ≈ k(cos(2θB + y′/Rd − θi)− cos θi), (4.2)

qz = k(cos 2Θ⊥ sin(2θ‖ − θi) + sin θi) ≈ k(sin(2θB + y′/Rd − θi) + sin θi),

where k = 2π/λ. The sample x-axis is oriented along the theta axis of rotation,

while the z-axis is oriented along the surface normal. The x′ and y′ axes are the pixel

coordinates in the detector plane, centered on the Bragg angle 2θB.

1This Be thickness absorbs 11 % of the 7 KeV X-rays.
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Figure 4.2: The scattering geometry. The Cu3Au (100) is along the z-axis. The angle of incidence
θi and the scattered angle θf are measured with respect to the sample surface. The angle 2θ‖ is the
usual detector angle.

4.4 Data treatment

The scattered X-rays were measured with the CCD described in Chapter 3. The

data acquisition was stopped regularly to record a dark pattern without X-rays. This

dark pattern slowly drifted in time over several hours and was monitored regularly.

For the data acquired at X-25, this drift was correlated with an NSLS lab cooling

water temperature drift1, which affected the CCD chip temperature because this

water cooled the CCD Peltier stage2. This drift was of the order of one or two X-ray

photons, but could easily be corrected by subtracting the most recent dark pattern.

Furthermore, the four corners of the CCD were masked by lead to absorb all incident

X-rays, so these areas were used to keep track of the drift in the dark pattern.

At X25, the detector signal was calibrated against a scintillation detector with

a quantum efficiency of nearly 100%, in order to correct the detector non-linearity.

After a dark signal subtraction, the detected signal was rescaled with this calibration

using Eq. 3.20.

During the CHESS experiment, one of the CCD amplifiers was different than

during the X25 experiment. For a given incident count rate and exposure time, if one

assumes that the raw data measured at CHESS only differs from the X25 calibration

1For example, it has been shown that the temperature drift in the cooling water at NSLS affects the
bending magnet alignment causing orbit motion[84].

2This problem has since been fixed by cooling the Peltier stage with a recirculating temperature-
controlled water bath.
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Figure 4.3: The measured CCD signal variance versus the mean. The calibration at X25 and CHESS
are respectively shown with squares and triangles. The solid line represents the CHESS data rescaled
by a factor 2.2 for the mean and (2.2)2 for the variance.

by a multiplicative constant, one can use Eq. 3.20 to rescale the CHESS data into

photons. It is shown in Fig. 4.3 that this constant is a = 2.2 so that the signal at

X25, VX , is equal to aVC , where VC is the signal at CHESS, and the variance at X25,

S2
X is equal to a2S2

C . This rescaling is excellent for count rates above 160 ADU. As

shown in the inset, some difference is seen for small count rates.

To compensate for the slow decay of the incident synchrotron radiation intensity,

the signal was scaled to the incident beam intensity measured by an air filled ion

chamber beam monitor1. After linearization and normalization to the incident inten-

sity, the floating point signal was multiplied by a factor 100 and then saved into a

two byte short integer array for further analysis.

4.5 Pinhole construction

The pinholes were made by laser drilling through 50 µm thick Pt foils2. The pinholes

used are really pinhole tunnels because their diameters are smaller than their 50 µm

thickness. The foils were glued on a 1.0 mm thick Ta mount, pierced with a hole of

diameter Dm = 0.5 mm. The ratio of transmitted intensity through a pinhole of diam-

1This detector measures the ionized current between two high voltage electrodes due to the photo-
ionization of gas molecules. This signal is proportional to the incident intensity when there is no
dielectric breakdown of the gas.

2The pinholes were manufactured by Optimation Hole division, 123 Nashua Rd, suite 172, London-
berry, NH 03053, USA, (603)623-2800
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eter D over the transmitted intensity through the Pt foil is D2/[D2
m exp(−µPtρPtt)],

where the density of Pt ρPt = 21.41 g/cm3, the Pt thickness t = 50 µm, and the

mass absorption coefficient of Pt µPt = 292 cm2/g at 7.0 keV. This design was found

to work well at 7 keV, since for the smallest pinhole used, D = 3.5 µm, this ratio

is 1.8 × 109. With approximately 3 × 105 photons/s passing through the pinhole,

1.7× 10−4 photons/s would be transmitted through the foil! It was found later that

this design can be further improved by re-orienting the pinhole with respect to the

axis of symmetry1. Finally one should note that one can use slits to limit the sample

size instead of pinholes2.

4.6 Demonstration of coherence: Fraunhofer diffraction

pattern of a pinhole.

To demonstrate that a hard X-ray beam generated by a second generation synchrotron

source is transversally coherent, one would perform a Young’s double-slit experiment.

Since the transverse coherence length of synchrotron sources at the sample position

is only a few µm, we would have to make two pinholes, separated by a few µm,

each having a one µm diameter. Since this is difficult to achieve experimentally3,

it is easier to observe the Fraunhofer diffraction pattern of a single pinhole. If the

transverse coherence lengths lx or ly are too small compared to the pinhole diameter D,

then no diffraction pattern would be observed. Otherwise, the Fraunhofer condition

1Recently, we found that the axis of maximum transmission through the pinholes was not exactly
adjusted with the surface normal of the foils. The pinholes were mounted on a goniometer and
centered by rocking the angle of incidence of the incoming radiation. We found that the axis of
maximum transmission for the 3.5 µm and 7.5 µm pinholes was tilted by 4.3 and 3◦ respectively
with respect to the axis perpendicular to the mount. An increase in flux of a factor 5 was found for
the 3.5 µm pinhole. The pinholes were remounted to fix this problem.

2Dr Doug Abernathy has done some recent work on this at ESRF using sharpened Huber slits to
observe Fraunhofer diffraction patterns. It seems possible to control these slits accurately and
reproducibly.

3The first observation of Fraunhofer diffraction patterns with hard X-rays from a rectangular 25 µm
wide slit was made by Mancini and Bilderback[85]. Recently, Ferrer et al. [86] observed a Fraunhofer
diffraction pattern of an effective slit made by an X-ray mirror. In a more recent experiment at ESRF,
Comin et al. also observed Young’s double-slit interference fringes at the surface diffraction beamline
(bl13) of ESRF, using 4.73 KeV X-rays incident on two 0.5cm grazing incidence mirrors separated
by 1 cm, which acted like double slits.
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Figure 4.4: Fraunhofer diffraction patterns of a 7.5 µm pinhole resolved with a 8.5 µm pinhole,
placed 1.12 m behind the first pinhole. The experiment is performed with 7 keV X-rays, at a ring
current of 200 mA. The pinhole was scanned vertically or along 2Θ||(Left). A least-squares fit of
the Fraunhofer diffraction pattern of a pinhole to Eq. 4.3, with D = 5.9 µm is shown with a solid
line. (Right) A detector scan in the horizontal, i.e. along 2Θ⊥. The fringe contrast is worst along
2θ⊥, and the FWHM of the peak is wider than the least-squares fit with D = 5.9 µm. As expected,
the fringe contrast is better along 2Θ‖ than along 2Θ⊥, because the vertical transverse coherence
length is 22 times larger than the horizontal one.

is satisfied and fringes would be observable.

Fig 4.4 shows Fraunhofer diffraction patterns observed at NSLS X-25. This was

observed with 1.77 Å X-rays incident on a pinhole with D = 7.5 µm, placed 28 m

from the source. The X-rays were detected with a scintillator masked by a 8.5 µm

pinhole placed 1.12 m from the pinhole. Two scans along 2Θ|| and 2Θ⊥ are shown.

The contrast is excellent, revealing fringes observable over four orders of magnitude.

Recall that the detected intensity of a Fraunhofer diffraction pattern of a circular

pinhole, measured by a point detector, is [39]

I(r) =
I0A

2

λ2R2
d

4J2
1 (πDr

λRd
)

(πDr
Rdλ

)2
, (4.3)

where x and y are respectively the horizontal and vertical displacements from the

peak center in the detector plane, Rd is the distance between the detector and the

pinhole with r =
√

x2 + y2 << Rd, I0 is the incident intensity on the pinhole and

A is the pinhole area. The factor A2/(λRd)
2 normalizes the integrated intensity to

∫∞
0 2πrI(r)dr = I0A. This relation assumes a plane wave illumination of the pinhole
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generated by a point source placed far away from the first pinhole. The first zero of

this function occurs at r = 1.22λRd/D. Its FWHM is

FWHM =
1.0288λRd

D
. (4.4)

The measured FWHM in Fig 4.4 are respectively 0.0298 mm and 0.0374 mm. Using

Eq. 4.4 with Rd = 1.121m, one finds D = 6.9 and 5.5 µm, which is in good agreement

with the 7.5 µm diameter estimated by transmission. A plot of the theoretical Fraun-

hofer diffraction pattern of a circular pinhole convolved with the detector resolution is

shown in both figures. The fit integrates Eq. 4.3 numerically over the detector pinhole

area. Six parameters are used: a peak intensity, an input pinhole diameter, a center

position, a fixed detector pinhole diameter of 8.5 µm, a constant background, and a

linear slope in the background. For the slice along 2θ‖, the central fifteen data points

are well fit, but the calculated fringes are out of phase with the data. For the slice

along 2θ⊥, the data are broader than the fit, and the fringe contrast is worse than the

fringe contrast along 2θ‖. The phase shift in the fringes and the assymmetric FWHM

could be caused by averaging many horizontal coherence lengths in the pinhole diam-

eter, and by spatial fluctuations on the incident intensity profile (see Fig. 4.7). When

this occurs, more complicated forms of the theoretical diffraction must be used, like

in section 5.7 of Ref. [39] and in Ref. [87].

We also observed these Fraunhofer diffraction patterns with the CCD detector.

Using the parallel detection properties of the CCD and its time resolution, one can

get more instantaneous properties of the diffracted beam and can test easily for source

stability and motion. If the source moves or some upstream optical element moves,

it is easy to track with the detector. This is a big advantage of the CCD over

the scanning pinhole assembly used in the previous figure. Fig 4.5 shows the time

average of the CCD data using an input pinhole diameter D = 3.5 µm and a distance

pinhole-CCD, Rd = 1.04 m using 6.9 keV X-rays. The CCD was exposed for two

seconds, and thirty six files were averaged. As seen in the two perpendicular slices

in the figure, the central 7× 7 pixels are reasonably fit by the Fraunhofer diffraction
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pattern of a circular pinhole, convolved with the detector’s resolution1 derived in

Eq. (3.12). The error bars of the data were calculated using the estimated variance

and Eq. (A.14). The fit shown is a non-linear least-squares fit, with a χ2 = 14.4,

D = 2.57 µm and a dark count of 0.25 photons/2sec/pixel. This high value of χ2

is probably caused by several effects, like a non-circular pinhole2, a finite source size

which does not satisfy perfectly the Fraunhofer condition of a point source and an

approximate resolution function. This fit has a smaller χ2 than the fits in Fig 4.4,

which were an order of magnitude larger. Since the ratio D/lx is smaller for the 3.5 µm

pinhole, the Fraunhofer diffraction condition is more closely matched with a smaller

pinhole. Finally, each scan of the CCD was fit to the model. Fifty one patterns were

collected with a cycling time of 10.4 s. The fit centers were constant to a fraction

of a pixel size except in one of the scans where the peak center moved by two pixels

(45 µrad) in the vertical. This sudden motion was seen in only one of the fifty one

scans and seems to be characteristic of the stability at X-253. This angular motion

would correspond to a source motion of 2 × 22.4µrad × 27.8 m = 1.2 mm which is

too large for a vertical source motion. It is most likely caused by some motion of the

monochromator, which results in an angular shift.

4.7 Incident X-ray beam structure and stability

Fig. 4.6 shows the time fluctuations of the incident beam at X-25 measured by an

ion chamber monitor placed before a 3.5 µm pinhole. The time fluctuations of the

total transmitted count rate measured with a scintillation detector placed behind

the pinhole are also shown. The relative fluctuations of the detector and monitor

signals are respectively 3.5 and 2 %. The detector signal fluctuations are larger than

the monitor signal. Furthermore, the fluctuations in the ion chamber monitor signal

1The calculated signal is integrated over the area of a pixel. Then it is smeared according to Eq. 3.12.
2One can see that the data are not quite circularly symmetric. Furthermore, two stripes are observed
in the tails of the diffraction pattern. These stripes are not clearly seen in the previous figure, but
they are easily seen far away from the peak.

3Prof. Steve Dierker mentioned that their group also observed a similar phenomena at X-25 in their
small angle scattering data from gold colloids.
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Figure 4.5: A grey scale of the CCD data (top left) for the central 20×20 pixel of the CCD. The grey
scale is logarithmic as shown in the legend in photons/2sec/pixel. Each pixel subtends 22.4 µrad.
To the right, a least-square fit to a Fraunhofer diffraction pattern of a circular pinhole convolved
with the detector resolution discussed in the text. Below, two perpendicular slices of the data (with
squares) and fit (solid line).
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Figure 4.6: (Top) Time fluctuations of the total flux transmitted through a 3.5 µm pinhole. The
upstream slits were wide open for this measurement. (Bottom) The ion chamber monitor signal at
X-25 before the pinhole. Fluctuations with a period of 62.5 s are present in the incident beam and
the transmitted beam.

and the transmitted beam through the pinhole in Fig. 4.6 are anti-correlated. This

is very likely a sign of angular fluctuations in the incident beam, modified by the

transmission through the pinhole. A Fourier analysis1 of these fluctuations for the

monitor reveals a fundamental period of 62.5 s, with some longer time scales with

periods of 100 s. The detector signal shows, in addition to the frequencies found in

the monitor signal, faster fluctuations with a period of 31.25 s, which is the second

harmonic of the fundamental. These fluctuations appeared also in the beam position

monitor signal.

Another group has observed incident intensity fluctuations at X-25 at about 25

Hz. Because, the shortest exposure was 120 s, we integrated over much of these

fluctuations, reducing the amplitude of the fluctuations.

Fig. 4.7 shows two scans of the spectrometer table revealing some random structure

modulating the incident beam at X-25. These length scales are approximately 20 and

1The power spectrum of the signal was calculated numerically. The power spectrum is the square of
the Fourier transform.
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Figure 4.7: The horizontal and vertical structure of the incident beam measured by scanning the
spectrometer table perpendicular to the incoming beam direction. The detector was placed behind a
3.5 µm pinhole. Scanning the spectrometer table moves the pinhole along the structure modulating
the incident beam. Note that the step size is the same for both plots. This structure is narrowest
in the vertical.

40 µm in the vertical and horizontal respectively. This spatial structure is time

independent. It is believed that the structure is due to either the monochromator

crystal or to some Be window upstream of the pinhole. This structure in the incident

beam was observed at CHESS, X25 and ESRF1. During the experiment, the incident

collimating pinhole was set on a flat region of this structure.

4.8 Temperature calibration and heat treatment

Fig. 4.8 shows a plot of the integrated intensity over an area of 380 × 190 pixels,

as the sample is disordered from below to above Tc. The critical temperature of

the order-disorder transition in Cu3Au is Tc = 391 ± 1 ◦C. It compares well with

the critical temperature of 390◦C found in the literature2. Before a quench, the

1Recently, it was found that the structure in the incident beam at ESRF was due to the small angle
scattering from the monochromator Be window. This was observed on a microfocus beamline. They
found that the structure observed was imaged from the Be window. By polishing this window, they
also showed that the structure disappeared.

2See Warren[26], Chapter 12
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Figure 4.8: Left: Integrated intensity of S(~q) over an area of 380×190 pixels centered on the Cu3Au
(100) reflection versus temperature. The inset is the integrated intensity over the parasitic peak
discussed in the next section. Its temperature behavior is the same as the (100) peak. Right: The
quench profile for Run 21. The temperature read by the second thermocouple is displayed as a
function of time after the quench. The sample was annealed near 440 ◦C and quenched abruptly to
its final temperature. The inset shows that after an initial undershoot of 2.5 ◦C, the temperature is
stable to within a fraction of a degree over sixteen hours.

sample was annealed above Tc to remove any long range order. At X25, the sample

was annealed at 440◦C and then quenched rapidly to its final temperature. Both

quenches reported in this thesis for the X25 experiment were made at the same final

set point temperature T = 370 ◦C, or t = Tc − T = 21 ◦C. The temperature after an

initial undershoot of approximately 2.5 ◦C was constant within ±0.5 ◦C for 20 hours

(See a typical quench profile in Fig. 4.8).

At CHESS, the sample was annealed slightly above Tc and quenched to a final

temperature of t = 22 ◦C. After an initial undershoot of 3 ◦C, the second thermometer

drifted up by 5 ◦C during the 10 hour experiment although the setpoint temperature

stayed constant. If this temperature drift is characteristic of the illuminated area,

this could affect the kinetics of the ordering process.

4.9 Setting the angle of incidence θi

Below Tc, for θ set at the Bragg condition, the structure factor consisted of a narrow

peak superimposed on a broad order-disorder peak of Cu3Au (100). The narrow
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component would move across the detector plane by scanning the angle of incidence on

the sample. Changing θi by an angle ∆ moved this peak in 2θ by 2∆. The integrated

intensity in this peak was maximized when θ was set to the Bragg angle, while the

broad order-disorder peak became weaker at the Bragg condition. A radial θ-2θ scan

along the (100) had a FWHM of ∆θ = 0.1 ◦. Furthermore, this peak disappeared

above Tc, which implies that it must be related to the order-disorder phase transition

in Cu3Au, and not to something like an oxide peak. Using dq/q = tan−1(θ)∆θ,

with θ = 14.54◦, one finds that this scattering could be caused by a surface layer

approximately 500 Å thick. In the experiments reported next, the Bragg angle was

offset by 0.1 ◦, in order to look only at scattering from the bulk sample. Some fraction

of the signal on the (100) is lost because of this offset.
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Results

5.1 Static speckle patterns

Fig. 5.1 shows an image of a speckle pattern of Cu3Au, measured with D = 7.5 µm.

The sample was kept at room temperature where the dynamics is frozen. The data are

characterized by three well separated length scales: the speckle size and the domain

sizes. It is well known that Cu3Au superlattice peaks are disks in reciprocal space

(See section 2.4). In the far field diffraction plane, regions of high intensity are next

to regions of low intensity, with a typical speckle size of ls, which is on the order of

the FWHM of the Fraunhofer diffraction pattern of the pinhole given by [15]

ls ≈ 1.0288λRd

D
. (5.1)

Here Rd = 1.04 m is the pinhole-detector distance, λ = 1.797 Å and D is the input

beam collimator diameter. The speckle angular size is given by a relative change of

optical path length equal to λ[15]. Here, ls is 25 µm or approximately a pixel wide.

Note also that for a perfectly coherent incident beam, the speckle size goes to zero

in the limit where the scattering volume goes to infinity. Therefore, it is possible to

wash out the contrast if the speckle size becomes smaller than the resolution of the

detector. It is important to match the detector resolution with the speckle size.

In the far field diffraction, the speckle pattern adds a random fluctuating envelope

to the (100) superlattice peak caused by coherent diffraction from X-rays scattered

from different antiphase domains. They are called antiphase domains because type I

and II domains walls cause π phase shifts in the scattered light from the (100) since

these walls are created by a relative displacement of (1/2,0,1/2)a, where a is the lattice

78
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Figure 5.1: A speckle pattern of Cu3Au (100) measured at room temperature after the sample was
ordered for 16 h at 373◦C. The scattered intensity in the central 200×100 pixels is displayed using
the grey scale legend. The beam was collimated with a 7.5 µm pinhole and the pattern was integrated
for 2 minutes. The data are scaled for beam intensity decay to a beam current of 200 mA. Below,
two slices are shown, one along 2Θ‖ with ~∆q = (0, ∆q‖) and one along 2Θ⊥ with ~∆q = (∆q⊥, 0).
The error bars are given by approximately

√
1.63v∗, as shown in Fig 3.6. To reduce the error bars,

several scans can be averaged (see Fig 5.2). The spatial fluctuations are clearly above counting
statistics.
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constant. The superlattice peak characteristic angular size ∆ ≈ λRd/RD, where RD

is the average radius of an antiphase domain in Cu3Au. In Fig. 5.1, ∆ is of the order

of 30 to 60 pixels, therefore the average domain size ranges from 1400 to 2800 Å. The

optimum condition for observing speckle occurs when ∆ is of the order of a few ls

so that the number of speckles measured by the CCD is of the order of (D/RD)2.

When RD > D, one simply observes the Fraunhofer pattern of the pinhole because

the sample has no disorder. This was observed in Ref. [15] on a perfect crystal of Si.

If the diffuse scattering is too broad, more speckles are observed, but the scattered

intensity is smaller. With current X-ray sources, one must prepare samples carefully

to observe speckle. Future third generation synchrotron sources should allow for a

greater variety of samples to be studied.

Another characteristic property of speckle is its very large contrast, defined as the

ratio of the standard deviation of the spatial fluctuations over the spatial average.

The contrast depends on two experimental conditions: the incident beam resolution

and the detector resolution. A large number Ns of independent speckles in a detector

area reduces the contrast by a factor 1/
√

Ns for a perfectly coherent incident beam.

Approximating the speckle area, As, by a disk of radius equal to the first zero of the

Fraunhofer diffraction pattern of the pinhole,

As = π

(
1.22λRd

D

)2

, (5.2)

one finds the number of speckles in a detector area Ad

Ns =
Ad

As

=
AdD

2

π(1.22λRd)2
. (5.3)

Since Ns ∝ D2, the contrast is proportional to 1/D for a fixed detector area, thus

increasing the pinhole diameter reduces the contrast.

The incident beam resolution is related to the degree of coherence of the beam,

measured by the ratio of the beam size over the transverse coherence lengths lx, ly.

Here, the sample size is controlled by the collimating pinhole diameter D. Increasing

lx,ly or reducing D improves the contrast. A useful parameter for determining the

contrast is the number of coherence areas Ac = lxly in the collimating pinhole area
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given by

Nc =
πD2

4lxly
. (5.4)

The contrast increases as Nc decreases.

To demonstrate these concepts, we performed an experiment which consisted of

changing lx and D independently. The horizontal transverse coherence length lx was

increased by closing the source x-y slits, thus reducing the effective source size ds (See

Fig 2.4). Only lx was changed because the horizontal source size of synchrotron radi-

ation is typically an order of magnitude larger than the vertical source size, resulting

in lx being the smallest of the two coherence lengths.

Fig. 5.2 shows slices of the speckle pattern for different D and source sizes. This

experiment was performed at X-25, with a ring current ranging from 210 to 150 mA.

The CCD was oriented at the time with its poor resolution direction along 2Θ‖. The

horizontal source size was reduced by closing the upstream slits which are 10.5 m from

the source, from an opening of 2 mm to 0.31 mm. This reduced the incident intensity

by approximately 2/3. The CCD was exposed for 30 to 240 s. To improve the counting

statistics, many scans were averaged for a total time ranging from 20 minutes to an

hour. Slices through the time averages along 2Θ⊥ and 2Θ‖ are shown. As expected

theoretically, the speckle pattern spatial fluctuations increase as D is reduced while

keeping lx constant, and are increased when the source size is reduced keeping D

constant. The error bars are much smaller that the spatial fluctuations of the signal

for all optical conditions. This will be shown later with Fig 5.9. Note that here

the peak average count rate is proportional to the pinhole area and slit opening.

The contrasts along both scan directions are very similar. Some of the scans along

2Θ‖ may have less contrast than their respective scans along 2Θ⊥ because the CCD

resolution is poorer along this direction.

Fig 5.1 and 5.2 show that the contrast and speckle size of the observed speckle

pattern are qualitatively consistent with the theoretical properties of speckle. To

measure these properties quantitatively, in the next two sections we develop tools

which will help to measure the contrast and speckle size of a given speckle pattern.
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Figure 5.2: Slices along 2Θ⊥ and 2Θ‖ of the time averaged speckle pattern of Cu3Au (100) at 300 K,
where no coarsening dynamics is expected. The labels indicate the pinhole diameter used and status
of the upstream slits: narrow (N) or wide (W). The setup with D = 3.5 µm and narrow slits was
not measured because of the long integration time needed. The error bars were calculated from
Eq. A.14 using the measured variance of N exposures. As discussed in the text, the contrast is
reduced when the diameter of the collimating pinhole D is increased at constant incident source
size, and is increased by reducing the source size at constant D. Scans along 2Θ⊥ and 2Θ‖ have
very similar contrasts.
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These tools could not be used as effectively without a two dimensional data set. This

is the main advantage of measuring speckle patterns with a CCD. Here, one can calcu-

late different statistical estimators which describe quantitatively the speckle pattern

properties. These estimators will have excellent statistics because the CCD records

2.2×105 pixel elements simultaneously, compared to one element for a standard detec-

tor. For example, Fig 5.1 would have taken 666 hours of valuable synchrotron beam

time to record by scanning a scintillation counter over the same area, or 3.3 hours

by scanning a 25 µm slit in front of the one-dimensional linear diode array discussed

earlier in section 3.0.4.

5.1.1 Measuring speckle size

To quantify the three length scales of speckle patterns, we will use a more general

form of the spatial correlation introduced earlier in Eq. 3.21. The crosscorrelation

function of the scattered X-rays is defined1 by

Γ( ~∆q, t, ∆t) ≡< v∗(~q, t)v∗(~q + ~∆q, t + ∆t) >~q . (5.5)

The linearized signal v∗, defined in Eq. 3.20, is measured at wavevector ~q and time t,

where qij and tk are discrete due to the nature of the detection process. The integers i

and j are indexes for the rows and columns of the CCD; v∗ is integrated from t to t+τ .

Let us first understand the autocorrelation function by setting ∆t to zero. An image

of Γ( ~∆q, t, 0) is shown in Fig. 5.3 for a typical speckle pattern measured with a 7.5 µm

pinhole. Two perpendicular slices of Γ are also shown in Fig. 5.4. The autocorrelation

consists of two peaks with well separated length scales. One peak has a width of the

order of tens of pixels, caused by the envelope of scattering previously discussed. The

central peak is related to the speckle pattern convolved with the detector’s response

autocorrelation. As shown in the inset of Fig. 5.4 and the enlarged central peak area

in Fig 5.3, the scattering is well correlated on a distance of 1-2 pixels.

1It is calculated numerically by Γ( ~∆q, t, ∆t) = fft−1(fft(v(t))fft∗(v(t + dt)), where the fft is a
spatial Fast Fourier Transform. It can be calculated also directly by evaluating the sums described
on page IX. Both methods are equivalent.
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Figure 5.3: A typical autocorrelation function Γ( ~∆q, t, 0) of the (100) superlattice peak of Cu3Au.
A linear grey scale between 0 and 65 photons2 is used for displaying Γ, and a pixel subtends a
∆qp = 7.53× 10−5 Å. Below, the central 7× 7 pixels of Γ with its color legend. The central peak is
related to the speckle size convolved with the detector pixel to pixel correlation.



5.1 Static speckle patterns 85

Figure 5.4: Two slices of Γ( ~∆q, t, 0) are shown. A cut along 2θ‖ is shown with a dashed line with
~∆q = (0,∆), and a cut along 2θ⊥ with ~∆q = (∆, 0) is displayed with a solid line. The width of the
diffraction pattern is about twice as narrow along 2θ‖. This difference is explained in section 2.4,
where it is shown that the structure factor is pancake-like in reciprocal space. The inset shows the
peak near ~∆q ≈ 0. The width of the peak is narrower along 2θ‖ because the detector resolution is
better in this direction. Note that the autocorrelation is symmetric with respect to the origin by
definition.

To understand Γ( ~∆q, t, 0) quantitatively, let us first illuminate the detector with

a spatially uniform source of incoherent X-rays with spatial average <v∗>~q. We have

shown in section 3.0.5, Fig 3.10, that

ΓD(<v∗>, ~∆q)−<v∗>2
~q ≈





1.63<v∗>~q, for ~∆q = 0,

0.85<v∗>~q, for ~∆q = (∆qp, 0),

0.2<v∗>~q, for ~∆q = (0, ∆qp),

0.13<v∗>~q, for ~∆q = (2∆qp, 0),

0.11<v∗>~q, for ~∆q = (±∆qs,±∆qp),

0 otherwise.

(5.6)

Here ∆qp is the magnitude of the wavevector difference between two nearest neighbor

pixels. Using S2
v∗,~q ≈ 1.63<v∗>~q, it is easy to derive Eq. 5.6 from Eq. 3.21. The

detector autocorrelation ΓD is due to the spreading of the electric charge from a

detected photon over several pixels. Fig. 5.5 and 3.10 show slices along q⊥ and q‖

of ΓD for a spatially uniform detected beam. The CCD has a narrower resolution
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Figure 5.5: With squares, a typical slice of the autocorrelation function ΓD = <v∗(~q, t)v∗(~q+ ~∆q, t+
∆t)>~q for ∆t = 0 measured by illuminating the detector with spatially uniform incoherent X-rays is
shown. ΓD has been normalized to <v∗>2, the square of the spatial average of v∗. The amplitude of

the peak is 1+
S2

~q,v∗
<v∗>2

~q

, where S2
~q,v∗ is the spatial variance of v∗. A slice of the cross correlation function

of two successive scans of the CCD detector is also shown with triangles, showing no correlation.
When one needs to evaluate the speckle size, the cross correlation function has the advantage of
removing the Poisson term in the right hand side of Eq. 5.6.

along the parallel transfer direction, here referred to as q‖. This explains why the

width of the speckle contribution is different in the q⊥ and q‖ directions in the inset

of Fig. 5.4. If the detector is illuminated with a speckle pattern, Γ( ~∆q, t, 0) will

contain a contribution due to the Poisson noise in the measured v∗ coupled to the

finite resolution of the detector, and one from the high contrast speckle pattern. To

measure the speckle contribution, we must subtract this Poisson contribution from

the detected correlation function, i.e.

Γs( ~∆q, t, 0) = Γ( ~∆q, t, 0)− ΓD(<v∗>~q, ~∆q), (5.7)

where Γs is the speckle contribution. This treatment can be simplified further if we

cross-correlate two successive speckle patterns, by approximating

Γs(∆~q, t, 0) ≈ Γ(∆~q, t, ∆t) =< v∗(~q, t)v∗(~q + ~∆q, t + ∆t) >~q, (5.8)

where ∆t is small compared to the time scale of any intensity fluctuations. In our

case, this is a valid assumption since the dynamics is frozen for a sample at room

temperature. Then the variance term in Eq. 5.6 due to Poisson noise disappears
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Figure 5.6: Comparison of Eq. 5.7 (triangles) with Eq. 5.8 (squares) along 2Θ‖ for a static speckle
pattern of Cu3Au. The autocorrelation calculated from Eq. 5.5 is shown for comparison with circles.
Note that the speckle pattern remains constant for 135 s since both equations yield the same Γs.

because v∗(~q, t) and v∗(~q, t + ∆t) are independent. The treatment is also simpler

since we do not need to take into account the Poisson contribution caused by the

couplings between neighboring detectors, or pixels.

As shown in Fig 5.5, the cross correlation of two spatially uniform patterns does

not show the excess correlation at ∆q = 0,±1,±2 ∆qp. There is no memory between

different scans of the CCD detector. Furthermore, this tool is quite powerful in

detecting any scattered beam motion. Fig. 5.6 shows the equivalence between Eq. 5.7

and Eq. 5.8. This also shows that the speckle pattern is unchanged after 135 s, which

is a sign of good mechanical and optical stability of the experimental setup over this

time period. Note that the Poisson and detector contribution in Eq. 5.7 could be also

taken out by averaging the signal over N independent scans of the detector and then

calculating Γs with

Γs( ~∆q, t, 0) ≈ <<v∗(~q + ~∆q, t)>t<v∗(~q, t)>t>~q. (5.9)

In Eq. 5.6, the right hand side would then be divided by N because the error on a

time average is reduced by
√

N , thus reducing the Poisson contribution.

Using Eq. 5.8, we can now estimate the speckle size in Fig. 5.1 and 5.2. If one
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assumes a point source illumination of the sample, the speckle size should be inversely

proportional to the beam size. Fig 5.7 shows the crosscorrelation of two subsequent

speckle patterns shown for different optical conditions. The correlation function was

calculated using a window of 256 by 512 pixels which covers most of the data. Two

effects are observed. As the pinhole diameter increases, the speckle size is reduced

and the autocorrelation function becomes resolution limited. For example, for the

wide open slits, the peak along 2Θ‖ subtends 9 points for the 3.5 µm pinhole but only

4 points for the 33 µm pinhole. Another indication of the resolution limit is seen for

the data with narrow slits, since for D = 15 and 33 µm, the peak is the narrowest

along 2Θ⊥, the direction of high resolution on the CCD.

Another feature in Fig. 5.7 is the baseline shifts. For example, the crosscorrelation

decays from a maximum of 2.9 to 2.6 for D = 3.5 µm (W), but decays from 3.93 to 3.6

for D = 7.5 µm (W). This baseline shift is caused by a change of the FWHM of the

(100). This change of FWHM was measured by fitting the data to a two dimensional

Gaussian later introduced in Eq. 5.11. It was found that the (100) is wider for smaller

pinholes. For example, the fitted widths σ‖ and σ⊥ decrease by 19 % when the input

pinhole diameter is increased from D = 3.5 to 33 µm with wide open upstream slits.

It is shown in section A.3 that the maximum of the spatial autocorrelation function

for a two dimensional Gaussian representing the incoherent scattering is inversely

proportional to the product of the fitted widths σ⊥ and σ‖. In Fig. 5.8, the baseline

of the correlation function, taken as the value of the crosscorrelation function along

2θ⊥ after the decay due to speckle, is plotted versus the inverse of the product of the

fitted widths. The baseline shift is proportional to 1/(σ⊥σ‖), in good agreement with

the prediction found in Eq. A.35.

This dependence of the FWHM of the Cu3Au (100) on the pinhole diameter D is

very surprising. It is present in both data sets with open and closed upstream source

slits. No coarsening dynamics occurred during this experiment since the sample was

at 300 K. These measurements were performed with record incident and scattered

wavevector resolutions. These measurements are micro-diffraction experiments on
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Figure 5.7: The effect of varying the collimating pinhole diameter, D, and the horizontal source
size on the speckle size. The solid and dashed curves are respectively slices of the cross-correlation
function between two subsequent exposures of the CCD along 2Θ‖ and 2Θ⊥ for wide (first column)
and narrow source slits (second column). The speckle size increases as D is reduced for a given slit
setting. Far away from ∆~q = 0, the correlation function decays faster along 2Θ‖ because the peak is
narrower along this direction. The autocorrelation of a Fraunhofer diffraction pattern of a circular
pinhole, convolved with the detector resolution is shown in the third column. The peak height and
baseline were adjusted to match the values found in the data set with narrow slits along 2θ⊥. The
pinhole diameter varies from 3.5 to 33 µm, and slices along 2Θ⊥ and 2Θ‖ are shown respectively
with dashed and solid lines. The spatial autocorrelation function of an ideal Fraunhofer diffraction
pattern of the pinhole is in good agreement with the observed autocorrelation of speckle patterns
for narrow slits.
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Figure 5.8: The inverse of the product of the fitted widths σ⊥ and σ‖ versus the maximum of the
correlation function. L⊥ and L‖ are the dimensions of the rectangle in reciprocal space used to
calculate the crosscorrelation function.

very small volumes of Cu3Au. Since the FWHM decreases with increasing D, we

speculate that by illuminating a larger volume of the sample, more large antiphase

domains become fully illuminated. Therefore, a larger illuminated volume would

better sample the large domain tail of the domain size distribution, resulting in a

decrease of the average domain size measured by the FWHM of the peak.

This effect is reminiscent of another effect observed in single crystals of Cu3Au and

Fe3Al. We have observed that by illuminating different parts of the sample with a

given pinhole diameter1, the intensity and FWHM of the superlattice peak varies. To

optimize the scattering condition, we move the collimating pinhole over the crystal

until a well ordered volume is found.

Since Sutton et al. [15] showed that the speckle size is proportional to the FWHM

of the Fraunhofer diffraction pattern of a pinhole (see Eq 5.1), a natural way to

understand the behavior of Fig 5.7 is to use the autocorrelation of the diffraction

pattern of a pinhole as a theoretical estimate. The third column of plots in Fig. 5.7

shows the expected autocorrelation function of a Fraunhofer diffraction pattern of a

circular pinhole, illuminated by a point source placed far away from the pinhole. The

diffraction pattern was convolved with the detector resolution discussed in Chapter 3

1The collimating pinhole can be moved easily using two perpendicular high resolution Klinger motors.
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and then autocorrelated. For large D, the speckle size is larger along 2Θ‖ than 2Θ⊥,

which implies that the speckle peak becomes resolution limited like the experimental

data for narrow slits. The theoretical model better fits the data with narrow slits

because the experimental condition is closer to the theoretical assumptions. Some

differences between the data and theory are observed for D = 3.5 µm, where the

measured correlation function for the data with wide open slits decays faster than

the model. The measured data are narrower than the model. Perhaps some of this

difference is caused by the fact that the Cu3Au illuminated area is larger than the

pinhole area since the sample is nearly outside the near-field diffraction of the 3.5 µm

pinhole (see section 4.1).

The other noticeable effect is that closing the horizontal slits reduces the FWHM

horizontally. For a given diameter D, slices along 2Θ⊥ becomes narrower than those

along 2Θ‖. This effect is small but does not depend on the method of calculation.

The same result is also obtained using Eq. 5.9 on the data of Fig 5.2, or by cross

correlating other sets of subsequent files. This is consistent with the FWHM of the

diffraction pattern being input divergence limited when the slits are wide open, to

becoming diffraction limited for narrow slits. The horizontal FWHM of the source

image in the detector plane for wide slits, ∆x, is approximately equal to dsxRd/Rs,

where the horizontal FWHM of the source dsx = 0.91 mm and the distance slit-

pinhole Rs = 17.3 m. Here ∆x = 55 and 19 µm for wide and narrow slits respectively.

Adding this geometrical optics effect to the FWHM of the diffraction pattern for a

7.5 µm pinhole shown in Eq. 4.4, gives an approximate FWHM of 55 + 24 µm, and

19+24µm for the wide and narrow slits respectively. This predicts a 45 % reduction of

the FWHM of the speckle size by closing the horizontal slits. The measured reductions

in the FWHM along 2Θ⊥ in Fig. 5.2 are 20, 45 and 55 % reductions for the 7.5, 15

and 33 µm pinhole respectively. The difference between the measured and predicted

change for the 7.5 µm pinhole may be caused by the resolution of the detector which

has not been included in the calculation. Note that these effects will be easier to see

in future experiments, by choosing a CCD array with finer resolution, or by placing
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the detector two or three meters away from the pinhole.

5.1.2 Contrast

We measure the contrast of the speckle pattern by

Ct(A, ~q) ≡
√√√√S2

A,v∗(~q)−<S2
t,v∗>A

<v∗(~q, t)>2
A

, (5.10)

where the spatial variance S2
A,v∗(~q) and mean <v∗(~q, t)>A are evaluated at a given

time, on a small area in q-space, A. The contrast might depend on the size of the area

chosen, and on the average ~q vector at the center of A. For an ideal speckle pattern,

one expects the contrast to be independent of the reciprocal space position. A very

large window would increase the contrast artificially because the peak line shape

varies across A. A very small window would poorly sample the spatial fluctuations.

For the measurement shown next in Fig 5.9, a rectangular window with a width of

20 pixels along 2Θ‖ and height of 40 pixels covering approximately 25 % of the Cu3Au

peak FWHM was chosen to match the Cu3Au peak asymmetry1. Using Eq. 5.3,

with a detector area As = (22.4 µm)2, one finds that the window chosen includes

approximately 30 independent speckles for the 3.5 µm pinhole and 2700 for the 33 µm

one. Thus for a given window size, we expect the standard deviation of the measured

contrast for a small pinhole to be larger than for a large pinhole because one samples

more independent speckles in the latter experimental condition.

In Eq. 5.10, S2
t,v∗(~q), the variance calculated from a time sequence of measurements

at ~q, is a Poisson noise contribution subtracted from S2
A,v∗ . Because we do not expect

any dynamics from the sample, S2
t,v∗ is due to counting statistics, incident beam

intensity fluctuations and any electronic noise from the detector. With this definition,

when the scattering is incoherent and no speckle is present, the contrast goes to

zero since the spatial fluctuations should be equal to the spatial average of the time

fluctuations in Eq. 5.10.

Fig. 5.9 shows the speckle pattern contrast for various pinhole diameters and two

upstream horizontal slit settings shown in Fig 5.2. The contrast increases as D

1A square window of 20× 20 pixels gave similar results.
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Figure 5.9: The contrast as a function of the collimating pinhole diameter D, as computed from
Eq. 5.10. Two data sets are shown for open horizontal slits (2mm) and closed horizontal slits
(0.31mm). Closing the horizontal slits increases the contrast for a given D because it increases the
horizontal coherence length lx.

is reduced, and increases as lx is increased. This is consistent with the statistical

properties of speckle. Note also that the contrast in Fig. 5.9 is proportional to the

amplitude of the decay of the crosscorrelation function in Fig. 5.7. For example, for

D = 3.5 µm (W), the crosscorrelation in Fig. 5.7 decays from a maximum of 2.9 to

2.6, thus
√

(2.9− 2.6)/2.6 = 0.34, which compares reasonably well with a contrast of

0.28 found in Fig. 5.9.

The measured contrast for Cu3Au seems lower than expected. The contrast for

an ideal speckle pattern is one. Let us calculate, for example, the contrast for D =

7.5 µm, and closed horizontal slits. At NSLS, the vertical coherence length is much

larger than D. The horizontal transverse coherence length is lx = λRs/2ds, where

Rs is 17.3 m, λ = 1.797 Å, and ds = 0.31mm. Here lx = 5 µm is smaller than the

pinhole diameter D, thus some contrast is lost in the horizontal. One expects the

contrast to drop from one to ≈
√

lx/D = 0.82. In Cu3Au, the longitudinal coherence

condition is satisfied, so no contrast should be lost. Another loss of contrast will be

caused by averaging many speckles in a detector area. Using Eq. 5.3, the number
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of speckles in the effective detector area, assumed to be approximately two pixels

along the serial transfer direction and one pixel along the parallel transfer direction

of the CCD, using Rd = 1.04 m is Ns = 0.35! Thus the speckles are much larger

than the detector area. One would expect a contrast of 0.82 for this measurement.

The measured contrast is a factor two lower than expected. This is consistent with

the results of Fraunhofer diffraction of the pinholes found in Fig. 4.4 and 4.5. For

example, the fringe contrast is lower than expected in Fig. 4.5. Some loss of contrast

could be due to the longitudinal coherence condition (See Fig. 2.6). For a semi-

infinite crystal, a small fraction of the scattered intensity will come from the bulk

of the crystal below one X-ray absorption depth. For these X-rays, the longitudinal

coherence condition will not be met, thus reducing the contrast. Finally for large

pinhole diameters, one would expect the spatial structure on the incident beam in

Fig. 4.7 to affect the spatial coherence of the beam.

One should note that the speckle pattern contrast in Fe3Al (1
2
, 1

2
, 1

2
) is comparable

to the one measured in Cu3Au. We measured recently a contrast of 0.36 for a static

speckle pattern of Fe3Al generated with nearly ideal coherent illumination [88].

5.2 Ordering kinetics of an order-disorder phase transition

The data presented next will cover quenches performed at X25 and CHESS. Two

sets of experiments were performed at X25: the so called run 21, obtained with a

collimating pinhole diameter D = 7.5 µm and an exposure time τ = 120 s, and

run 24 obtained with D = 15 µm and τ = 60 s. To test the beam stability, we

also performed an experiment with the sample at T = 300 K, where the domains

are frozen using the same parameters as run 21. At CHESS, run 113 was obtained

with D = 7.5 µm and τ = 114 s. These experimental conditions are summarized in

table 5.1.

Fig. 5.10 shows the data for three subsequent times after the quench in run 21. The

data are displayed with a linear grey scale between 0 and 35 counts/120s, and scaled

to a synchrotron ring current of 200 mA. For t = 50589s, the maximum intensity
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t=12026s

t=24881s

t=50589s

0 17.5 35 counts/120s

2Θ

2
Θ

Figure 5.10: S(~q, t) for t = 1.2, 2.49, 5.06×104 s after the quench for run 21. The data are displayed
with a linear grey scale shown above. The data span a wavevector range from the center of an image
of ±0.0136 and ±0.00678 Å−1 along 2θ⊥ and 2θ‖ respectively. As the domains grow in time, the
superlattice peak intensity increases and the peak becomes narrower in reciprocal space.
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Table 5.1: Summary of the experimental parameters for different experiments. The cycling time ∆t
is the sum of the exposure time τ and the dead time. The experiments at X25 were performed with
wide open upstream horizontal slits to optimize the scattered intensity. The contrast dependence on
the sample temperature and pinhole diameter is also shown. It was calculated using Eq. 5.10 over
a square of 20× 20 pixels centered at ∆2θ⊥ = ∆2θ‖ = 0. The contrast is temperature independent
for the temperatures studied in Cu3Au.

Experiments τ (s) ∆t (s) D (µm) T (K) Contrast

Run 22 120 135.3 7.5 300 0.262± 0.005

Run 21 120 135.3 7.5 643 0.26± 0.01

Run 24 60 75.4 15 643 0.166± 0.006

Run 113 114 120.6 7.5 643 0.27± 0.01

detected is 78 counts/120s, but less than 2 % of the pixels have a count rate exceeding

35 counts/120s. These pixels are also displayed in black. Slices along 2θ⊥ and 2θ‖ are

shown in Fig. 5.11 for these three different times. As expected from the coarsening of

domains, the Bragg peak sharpens along 2θ⊥ and 2θ‖, and the peak intensity increases

monotonically with increasing time. The solid lines in Fig. 5.11 are least-squares fits

to a Gaussian defined by

Sf (~q, t) = Imax(t) exp


−(q⊥ −Q⊥(t))2

2σ2
⊥(t)

− (q‖ −Q‖(t))2

2σ2
‖(t)


 , (5.11)

where Imax(t) is the time dependent fitted peak intensity and Q⊥(t) and σ⊥(t) are the

fit center and width along 2θ⊥. These least-squares fits were performed on an area

covering a large fraction of the two-dimensional data set1. These fits were used to

estimate the incoherent structure factor and to give a smooth average of the structure

factor which could then be used in the measurements of the time fluctuations. Note

that an elliptical average of the structure factor with respect to the center of mass

could also have been used to define a local average. We chose the fits because they

have no random spatial fluctuations.

1The two-dimensional data set was fitted using a standard non-linear fitting routine, transforming
the data into a one dimensional vector and using the independent coordinate to encode the position
of the pixel on the CCD. Typically, a rectangular region of the CCD with 220 by 360 pixels was
used along 2θ‖ and 2θ⊥ respectively. The data were equally weighted for the fit. A small region
surrounding the parasitic peak was discarded because it dominates the scattering at early times.
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Figure 5.11: Slices of S(~q, t) along 2θ⊥ and 2θ‖ for the three different times in Fig. 5.10. To
distinguish the data sets, a constant of 25 and 65 counts/120s was added to the data at time
t = 24881s and t = 50589s respectively. The solid lines are least-squares fits introduced in Eq. 5.11.
These fits are used as a local average for the spatial and temporal fluctuations.

Fig. 5.12 shows the time dependence of the five fit parameters for the data. The

peak intensity Imax at the end of run 21 is 88 % of Imax for run 22. The peak intensity

of run 24 is approximately seven times larger than for run 21, and its calculated

integrated intensity is approximately five times larger than run 21 at the same time

after the quench. The CHESS data are nearly 3.5 times more intense than run 21,

and for an identical beam current of 200 mA, run 113 is seven time more intense than

run 21. Note that an undulator was used at CHESS rather than a wiggler, and that

the CHESS synchrotron ring energy is twice that of the NSLS ring.

In Fig. 5.12, the time average1 of the fit center along 2θ⊥ is <Q⊥>t = 209.1± 7.6,

199.5 ± 0.6, 198.8 ± 3.4, and 242.8 ± 2.7 pixels for run 21, 22, 24, 113 respectively.

A motion of one pixel is equal to an angular motion of ≈ 22 µrad. The fit center is

most stable for run 22 at T = 300 K. During run 21, Q⊥ drifts by twenty pixels, or

1The early changes in the fit parameters before t ≈ 2000 s were discarded from the time average
because the scattering is weak at early times resulting in poorer fits. The error bars quoted are the
standard deviation of the fit parameters.
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Figure 5.12: (Top left) The fitted peak intensity Imax for the experiments at X25 and CHESS. The
CHESS and X25 data were scaled to a ring current of 100 and 200 mA respectively. (Top right)
The calculated integrated intensity. (Middle left) The fit center Q⊥. The data for run 24 and run
21 were offset by ten and thirty five for clarity. (Middle right) The fit center Q‖. (Bottom left) The
fitted widths σ⊥ and σ‖ are shown respectively with solid and dotted lines. The inset shows the
widths for run 22 on a linear scale. (Bottom right) The ratio σ⊥/σ‖.
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approximately 0.4 mrad, while Q⊥ changes abruptly after a monochromator tweak at

t = 5.11 × 104 s. For run 24, some oscillations are seen near t = 4.1 × 104 s. These

oscillations correlate with the beam position monitor.

The time averages of Q‖ in Fig. 5.12 are <Q‖>t = 298.2 ± 1.8, 317.8 ± 0.4,

332.3 ± 1.4, and 308.2 ± 1.4 for runs 21, 22, 24, 113 respectively. It is most stable

for run 22. The steps seen in Q‖ for run 113 are slight motions occurring after a new

synchrotron fill at CHESS. The fit center Q‖ tends to be more stable than Q⊥ for all

the experiments reported at CHESS and X25. Since 2θ⊥ is measured in the horizontal

plane, the fact that the motions are greater along 2θ⊥ may be due to larger incident

beam motion horizontally than vertically1.

As expected from the domain coarsening in the late time regime, the widths of the

(100) in Fig. 5.12 follow a power law in both directions. For run 21, a fit of the widths

to a power law, σ(t) ∝ t−n, yields n = 0.43 ± 0.01 and 0.45 ± 0.01 for σ⊥ and σ‖

respectively. For run 24, σ⊥ ∝ t−(0.41±0.01), and σ‖ ∝ t−(0.438±0.005). The fitted widths

along σ⊥ are less reliable at early times for runs 21 and 24 because 2θ⊥ was aligned

on the serial transfer direction of the CCD. The fit becomes poorer at early times

because a large fraction of the scattered intensity is outside the detector window,

and count rates are low. As seen in Fig. 5.12, the ratio of σ⊥/σ‖ is approximately

two for the data recorded at X25, and it is weakly time dependent. This weak time

dependence implies that the difference in the exponent of the power law for σ⊥ and σ‖

is significant. For run 113, the time dependence of the ratio is caused by a temperature

drift of the sample of 5◦C over the total time of the experiment2.

The expected growth exponent for Cu3Au is 1/2 [29, 31, 32, 33], thus our mea-

sured exponents are slightly below the exponents observed by others. The coarsening

dynamics are slower along 2θ⊥ for all the experiments performed. Previous work re-

ported the same exponents in both directions. Since this experiment was optimized

1At X25, it was observed that vertical motion is more constrained than horizontal motion because
the two monochromator crystals are set to diffract at a given wavelength and a narrow range of
incident angle [50]. A horizontal motion is not affected by such constraints.

2This temperature drift was measured in the second thermocouple used to record the sample tem-
perature (See section 4.8).
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to measure intensity fluctuations, and not growth exponents, these differences are

not really surprising. It is possible that some residual non-linearities of the detector

could slightly change these exponents. These fit parameters along with the contrast

discussed next in table 5.1 describe the spatial dependence of the structure factor.

The time dependences of runs 24 and 113 are not shown here because they are

quite similar to the ones shown in Fig 5.10 and 5.11 for run 21. Run 113 and run

21 have identical contrast within error (see Table 5.1). The main difference between

the data for run 21 and run 24 is a difference in contrast due to the different pinhole

diameters used. The contrast is temperature independent within error for runs 21

and 22 since they have the same D. Furthermore, the contrast measured at 300 K in

Fig 5.9 using D = 15 µm and wide open horizontal slits is 0.177±0.005, in agreement

with the contrast measured for run 24.

Since very little thermal diffuse scattering is observed in Cu3Au before a quench at

the annealing temperature T = 440◦C1, and no thermal diffuse scattering is observed

above Tc as shown in Fig. 4.8, the observed contrast must be dominated by the speckle

pattern created by domain walls for the observed temperature in Cu3Au.

Fig. 5.13 shows the time evolution of a single row of the CCD in run 21 along δq⊥

for ∆2θ‖ = 0. After the quench, speckles appear at fixed ∆q⊥, and their intensity

grows monotonically in time. Some speckles can be seen in the figure as early as

1.2 × 104 s and remain present until 5.8 × 104 s, for a total time of over thirteen

hours. The monochromator reset occurring near t = 5.11 × 104 s affects the speckle

pattern. Some speckles disappear, others appear, while some of the most intense

remain present. The presence of the speckle over such an extended period was quite

surprising initially. We were expecting to see dynamics with much shorter time scales

than 104 s, as for a typical equilibrium IFS experiment. This difference between

equilibrium and non equilibrium will be explained in more detail in the next section.

Fig. 5.14 shows a time series for run 22. This experiment was performed to test the

1Before a quench, an upper limit for the diffuse scattering at T = 440◦C is 0.2 counts/120s/pixel at
200 mA. This upper limit is on the order of the dark pattern fluctuations.
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Figure 5.13: Time evolution of a single row with ∆2θ‖ = 0. The grey scale displays the normalized
data in counts/2min at 200 mA. The white horizontal lines are measurements of the dark pattern.
The graininess on short time scales is caused by intensity fluctuations due to counting statistics.
The spatial fluctuations along ∆q⊥ are speckles. After the quench at t = 0 s, speckles appear
at fixed wavevectors, and their intensities grow monotonically. During the dark pattern at time
t = 5.11 × 104 s, the monochromator was reset. After the monochromator reset, many speckles
appear and disappear.
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Figure 5.14: Time evolution of a single row with ∆2θ‖ = 0 for run 22. The grey scale displays
the normalized data in counts/2min at 200 mA. Most speckles are present over 2.6 × 104 s. Some
instability is present near t = 1.1 × 104 s. Many speckles change or move around this time. The
monochromator was readjusted near t = 2.16× 104 s to reproduce similar conditions as run 21. The
effect of the adjustment appears less pronounced than in run 21. Most speckles remain unchanged.
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beam stability, since the domain motion is frozen at room temperature. Most of the

speckles remain present over seven hours. Some instability occurs near t = 1.1×104 s.

During this time, the sample temperature fluctuated by 2.1◦C over 2300s. This

temperature change is caused by temperature fluctuations in the laboratory cooling

water, which was used to cool the oven. A change of 2.1◦C expands the Cu sample

post in a direction perpendicular to the scattering plane by 2.2 µm, which is is about

30 % of the pinhole diameter used1. Thus, this instability could be caused by the effect

of this temperature fluctuation on both the oven and on the beamline components.

The monochromator was reset at t = 2.16× 104 s. The effect of the monochromator

tweak on the speckle pattern appears less pronounced than in run 21. In run 21, we

tweaked the monochromator in order to regain some incident intensity because the

ratio of beam monitor to synchrotron ring current was dropping rapidly. There was

no such drift in run 22.

Fig. 5.15 shows a time series of a row of the CCD with ∆2θ‖ = 0 for run 24.

Speckles appear as early as t = 1.44 × 104 s and some are still present after 7.1 ×
104 s, or 16 hours. An instability occurs around t = 4.1 × 104 s and lasts until

t = 4.8 × 104 s. It correlates with fluctuations of the fit center along 2θ⊥ shown

in Fig. 5.12. These fluctuations move the fit center by approximately ±7 pixels, or

approximately ±150 µrad. This instability is caused by instabilities in the beamline,

since these time fluctuations are also seen in a beam position monitor. Since the

pinhole diameter is twice as large as in run 21, the incident intensity is larger and the

relative time fluctuations on time scales of tens of minutes are smaller than in run

212. The spatial fluctuations are reduced because of the smaller contrast observed (see

Table 5.1). These two effects result in a smoother image than Fig. 5.13 or Fig. 5.14.

Note that we tweaked the monochromator several times during this run, but no effects

are noticeable on the time series. It appears that for the data collected at X25, the

1The Cu sample holder was 6.5 cm high. Using an expansion coefficient of 16.5 × 10−6/K, and the
quoted temperature change, one finds a motion of 2.2 µm.

2A careful analysis comparing the measured variance for a small number of subsequent scans N ≈ 10
with the calculated variance expected from counting statistics calculated using the calibration curve
found in Fig. 3.6 revealed that the short time fluctuations on the order of 25 min are due to Poisson
noise and some incident beam fluctuations.
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Figure 5.15: A time series of run 24, with ∆2θ‖ = 0 lasting for nearly 20 hours. A linear grey scale
from 0 to 135 counts/60s scaled to a maximum synchrotron ring current of 200 mA is used to display
the data.
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Figure 5.16: A time series of run 113. A single row of the CCD oriented for ∆2θ⊥ = 0, along 2θ‖ is
shown. Gaps in the data occur during two synchrotron ring fills. Note that the ~q axis orientation of
this figure is perpendicular to the previous time series shown.

speckle pattern is almost always unchanged after a monochromator reset.

Fig. 5.16 shows a time series of S(~q, t) for run 113, along ~q = (q‖, q⊥ = 0). Speckles

appear as early as thirty minutes after the quench, and some of them are still present

at t = 3.4×104 s. The shortest fluctuation time observed in Fig. 5.16 is approximately

two hours. There may be signs of faster dynamics on this data set, when compared

to the data from runs 21 and 24.

To investigate in more detail the time fluctuations of S(~q, t), the time dependence

of the signal in several pixels is shown next for representative data sets. Fig. 5.17



106 5 Results

shows S(~q, t) vs t for twenty five pixels well separated from each other in Fig. 5.13.

The error bars were calculated1 from the calibration curve in Fig. 3.6, and scaled

appropriately to take into account the decay of the synchrotron ring current. The

solid line is the fitted intensity Sf (~q, t) for the given pixels calculated from Eq. 5.11.

This measurement is very different from a measurement performed with incoherent

X-rays, where one expects the fluctuations of the data around the fit to be only due

to counting statistics. The time fluctuations of the structure factor with respect to

the fit are clearly above the fluctuations due to counting statistics. Note that the

signal in each pixel has a unique random dynamics. This is what one expects in

an IFS experiment. For some pixels, the structure factor remains always above or

below the fit. For many pixels, the structure factor crosses Sf (~q, t), from values lower

than Sf , to values higher than Sf at a later time. Fluctuation times range from

several thousands of seconds to tens of thousands of seconds. The jump in S(~q, t)

near t = 5× 104 s is due to the monochromator reset. These data are representative

of the time fluctuations of S(~q, t) measured after a quench.

The data in run 22 were taken after run 21 to test the stability of the experiment

by scattering from a sample with frozen domain dynamics. The time dependences

of twenty five independent pixels in Fig. 5.14 are shown in Fig. 5.18. Apart from a

random offset due to the finite contrast, the structure factor fluctuates significantly

from the fit. The time fluctuations near 1.1× 104 s are caused by the instability dis-

cussed before. Because of the presence of these time fluctuations when the coarsening

dynamics is frozen, the beamline X25 did not have the time stability required at the

time of the experiment2 to clearly separate intrinsic time fluctuations of S(~q, t) due

to the coarsening dynamics of Cu3Au, from those caused by beamline instabilities.

1Given a, the ratio of the monitor count to the monitor count measured for a ring current of 200 mA,
the error on the structure factor S(~q, t) = av∗(~q, t) is σS =

√
σ2

d + a21.63v∗, where σ2
d is a dark

electronic contribution to the variance measured in a region of the CCD masked by lead, and v∗ is
the linearized CCD signal. Here σS is the standard deviation of S(~q, t), calculated by a sum of the
variances from electronic noise and Poisson noise.

2Since then, much work has been done at X25 to understand the long time stability of beamline X25
[50]. The instabilities seem to be caused by changes in the power loading of the monochromator
due to the decay of the synchrotron ring current. Feedback techniques are under consideration to
improve the long term stability at X25 [50].
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Figure 5.17: Slices of Fig. 5.13 along the time axis for run 21, with dq‖ = 0. Twenty five different
pixels are shown, starting from dq⊥ = −9.04 × 10−3 Å−1 at the lower left corner, to dq⊥ = 9.04 ×
10−3 Å−1 on the top right corner, each separated by 7.53 × 10−4 Å−1. The solid line is the fitted
structure factor for a given pixel. To improve the statistics, the signal was averaged in time by
five scans, and in space by summing the signal from two neighboring pixels along 2θ⊥. Each pixel
behaves differently. Often, the data go from being smaller than the fit to being above it.
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Figure 5.18: Slices along the time axis of Fig. 5.14 in run22, for dq‖ = 0. Twenty five different pixels
are shown, starting from dq⊥ = −9.04×10−3 Å−1 at the lower left corner, to dq⊥ = 9.04×10−3 Å−1

on the top right corner, each separated by 7.53 × 10−4 Å−1. The solid line is the fitted structure
factor for a given pixel. To improve the statistics, the signal was averaged in time by five scans, and
in space by summing the signal from two neighboring pixels along 2θ⊥. Due to some instabilities,
the structure factor also fluctuates significantly from the fit.
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To conclude this section, we found that the measured spatial contrast for Cu3Au

(100) is temperature independent for the temperatures measured in these experi-

ments. This shows that the speckle pattern is caused by antiphase domains, since the

change in thermal diffuse scattering does not affect the contrast.

In all the experiments reported here (see Fig. 5.13–5.16), the dominant speckles

appear shortly after the quench at fixed ~q, and the intensity of the speckles grows

monotonically in time. This is an important aspect of IFS in binary alloys out of

thermodynamic equilibrium. After a quench and for a given set of initial conditions,

scattering maxima appear at fixed, but random wavevectors. Different fixed wavevec-

tors would be chosen by the system in another quench.

In the coarsening regime, the overall peak intensity of the speckle pattern grows

with time, and the peak sharpens as the domains grow. A scaling function estimated

by Gaussian least-squares fits of the whole speckle pattern describes well the sharp-

ening of the structure factor. As expected, the widths along 2θ⊥ and 2θ‖ are scaling

approximately as t−
1
2 .

Recall that from scaling arguments, the long time behavior of the structure factor

S(~q, t) ∝ R(t)df(~qR(t)), where f is a scaling function, R(t) ∝ t
1
2 is the average

domain size, and d = 3 is the dimension of the system. An important feature of the

measured speckle pattern is that it cannot be rescaled with such a scaling function

since the speckles are fixed in reciprocal space, and any scaling function f would move

individual speckles towards the center of the Cu3Au (100) peak. Thus, the presence

of speckle explicitly breaks simple scaling of the structure factor which is ubiquitous

in phase transitions.

Although this appears surprising, one should recall a few important points about

XIFS and scaling. The observation of speckle is a finite size effect. Two independent

lengths scales are present here: the average domain size and the scattering volume.

Strong scattering is observed in the experiment when the average domain size is a

small fraction of the sample size. This strong scattering is measured at low wavevec-

tors ∆q < 1/RD, which corresponds to the large domains. The slow dynamics of large
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domains explains why the individual speckles for small wavevectors change slowly in

time. Furthermore, scaling in first order phase transitions implies an ensemble av-

erage over independent quenches or initial conditions. Here, the structure factor is

calculated from a single quench! The ensemble average removes the speckles in the

structure factor. These facts explain why these observations were never noted before.

Note that although the speckle pattern does not follow simple scaling, the average

scattering does scale as shown with the Gaussian fits. The power of XIFS is in the

measurement of subtle changes of the speckle pattern. We believe that subtle time

correlations of the domain structure can be obtained from a single quench on a sample

size of a few µm. Much work remains to be done in this direction.

The time fluctuations of the structure factor with respect to a least-squares fit

representing the sharpening of the domain distribution are clearly above counting

statistics. Unfortunately as seen in Fig. 5.18, the long term stability of the experiment

was not sufficient to establish whether these observed fluctuations are intrinsic to the

coarsening dynamics or not. The main conclusion of this work is that the amplitude of

the time fluctuations of the intensity are small, and that their time scales are very long.

As shown in Fig. 2.13 and is well known from light scattering, the amplitude of the

fluctuations in thermal equilibrium equals the size of the signal. If such fluctuations

would have been present in this non-equilibrium experiment, they would have been

easy to measure with the count rates observed.

5.2.1 Numerical Simulations of model A

The behavior described above agrees with the numerical simulation of model A.

Fig. 5.19 and 5.20 show the results of a numerical simulation for three different times

after a quench at t = 0. The parameters of the simulation were the same used in the

equilibrium simulation in Eq. 2.29 with M = −r = w = κ = 1.0, with a Gaussian

noise strength 2kBTM = 0.1 (see Eq. 2.27). The time interval between two iterations

of the simulation was dt = 0.05, and the spatial increment dx = 1. The system was

quenched with a random initial configuration generated with white noise ranging from

−0.05 to 0.05 corresponding to the high temperature state. The images on the left
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Figure 5.19: The order parameter (left) ψ(~r, t) and the structure factor S(~q, t) (right) for three
different times t after the quench. A linear grey scale was used to display the order parameter from
ψ = −1.2 (white) to 1.2 (black), and from 0 to 0.003 for the structure factor. The order parameter
spatial dependence is shown for a system of 512×512. The central 128×128 elements of the structure
factor are shown. The central pixel in these images corresponds to ~q = 0. Speckle is caused by the
coherent diffraction from the random domains shown. As the domains grow, the structure factor
sharpens and its intensity increases.
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Figure 5.20: Slices of S(~q, t) for model A, for times t = 5, 10, 20, 40, 80 after the quench. The solid
line is used as a guide to the eyes. The structure factor grows by a factor 8 and the peak sharpens.
Most speckles remain fixed in ~q, and their intensities fluctuate slowly. The dashed lines are fits
described in the text.

in Fig. 5.19 show the time dependence of the order parameter for a simulation size of

512×512. In the coarsening regime for model A, it is well known that a simultaneous

rescaling of length and time by factors of two and four respectively yields comparable

domain structures [60]. In Fig. 5.19, for example, by rescaling one quarter of the

512 × 512 system at time t = 10 by a factor two, one would find that the domain

structure of the rescaled system appears similar to the non-rescaled system at a later

time t = 40.

On the right of these images, the structure factor calculated from Eq. 2.10 is

shown with a linear grey scale. Fig. 5.20 shows slices of S(~q, t) with ~q = (0, qy) and

time t = 5, 10, 20, 40, 80. As observed in our experiments, speckle is present in the

simulation. In order to reduce the speckle in the structure factor, most theoretical

work performs either averages on an ensemble of independent initial conditions, or on

several wavevectors with identical magnitude |~q| = q. By performing these averages,

one looses much of the information on the fluctuations of the order parameter during
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Figure 5.21: (Left) The time dependence of the two perpendicular fitted widths σx and σy. The
widths are measured in units of the wavevector resolution ∆q = 2π/L, where L is the system size.
The inset shows the time dependence of the ratio of σx/σy. The ratio of the fitted widths is below
unity at late times indicating a slight difference between the exponents of the widths. (Right) The
peak intensity, Imax. After a transient, the system crosses over to scaling after time t ≈ 7. The inset
shows the integrated intensity for the fit Imaxσxσy vs time.

the quench.

The domain coarsening in Fig. 5.19 and 5.20 is seen by a sharpening of S(~q, t) and

an increase in the intensity of the peak. The dashed line in Fig. 5.20 is a least-squares

fit of the structure factor to a Gaussian defined in Eq. 5.11. In analogy with the CCD

data, this fit is used to define a local average for the fluctuations.

Fig. 5.21 shows the time dependence of the fit parameters. The center of the fit

was fixed at ~q = 0. A plot of the fitted widths σx and σy is shown. A fit of each width

to a power law in the coarsening regime, i.e. from t = 7 to 95, gives σx ∝ t−0.41 and

σy ∝ t−0.40. This difference is real since the ratio of σx/σy decreases as t increases

(See the inset). It is amusing to note that these power law exponents are similar to

the data.

A plot of the fitted peak intensity, Imax, is also shown as a function of time after the

quench. The peak intensity, after a transient which last until t ≈ 7, becomes a power

law. This is consistent with the coarsening of domains. A fit of the peak intensity

from t = 7 to 95 gives Imax ∝ t0.86. The inset shows the calculated integrated intensity
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of the fitted Gaussian Imaxσxσy. It is time dependent in the nucleation regime, but

slows down after t ≈ 7. In the coarsening regime, it is slightly time dependent since

the sum of the exponents from the widths and peak intensity does not add up to zero.

The magnitudes of these exponents are significantly lower than the expected ex-

ponents for model A. For model A, one expects σx ∝ t−
1
2 , σx/σy = 1, and Imax ∝ t

d
2 ,

with d = 2 dimensions. The expected results are obtained from an ensemble aver-

age of many quenches with different initial conditions, and the structure factor is

circularly averaged. It is well known that one must average several quenches to get

adequate statistics for these parameters. These differences in the magnitude of the

exponents, and the anisotropy of S(~q, t) are consistent with the poor sampling of

phase space for a single quench.

Fig. 5.22 shows a time series of S(~q, t) for ~q = (qx, 0). The time dependence is

shown here for 100 wavevectors using the grey scale shown. From the definition of the

structure factor, the figure is symmetric with respect to the origin ~q = 0. Recall that

the fluctuation time in equilibrium for model A is τc = 1
M(2q2−4r)

, which ranges from

τc = 0.25 to 0.08 as shown in Fig. 2.11c. The fluctuations on Fig. 5.22 are several

orders of magnitude slower than the equilibrium fluctuations of the short range order.

At low momentum transfer, the fluctuation times are much larger than the simulation

time shown, but for large qx, fluctuations are observable on time scales ranging from

≈ 2 to 60, which is still much larger than τc. This is shown in more detail in Fig. 5.23,

where slices for several qx are shown. The solid line is the simulation data, and the

dashed line is the Gaussian fit, with parameters shown in Fig. 5.21. The sudden rise

and decay of the fit for a given qx gives us a characteristic time for the coarsening

dynamics at a given qx. For low qx from 0 to 20, the simulation time is comparable

to the coarsening time, but for higher qx, some intensity fluctuations are seen above

the fit with time scales of the order of ∆t = 20.

The time correlation of these fluctuations has not been investigated further. More

work remains to be done in this area. We urge theorists to investigate the intensity

fluctuations of the structure factor without performing spherical averages, because it
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Figure 5.22: A time series of S(~q, t), for ~q = (qx, 0) after a quench at t = 0. The component qx is
measured in units of ∆q = 2π/L, where L = 512 is the system size in Fig. 5.19. Note that a speckle
at qx = 7 has a wavelength λ = 2π/qx = L/7. The fluctuations of the structure factor for model
A are much slower than the equilibrium fluctuations discussed in Chapter 2 because the dominant
speckle correspond to the Fourier modes associated with the long wavelength domain structure in
the sample. As seen in Fig. 5.19, this overall domain structure changes very slowly.
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Figure 5.23: S(~q, t) vs t for several qx ranging from 0 to 40. The solid line is the simulation data,
and the dashed line is a least-squares fit to a Gaussian discussed in the text.

is now possible to measure these fluctuations with coherent X-rays! This time corre-

lation function should provide additional information on the dynamics of ordering.

In conclusion, we find that the numerical simulation of model A is in good qual-

itative agreement with the measurements in Cu3Au. The simulation shows that the

dominant speckles are fixed in reciprocal space and their intensities slowly increase

in time. Fig. 5.22 shows that the long-lived speckles correspond to long wavelength

fluctuations associated with the domain structure. It is clear from Fig. 5.19 that a

large fraction of the overall domain structure correlates with itself at later times. This

explains why the time fluctuations of the speckle pattern from Cu3Au (100) and for

the theoretical simulation are much longer than the typical fluctuation times found

in equilibrium.

Note that it is not essential to use a detailed model of Cu3Au with a more physical

Hamiltonian to understand the data. The small system size for the simulation (Here

512 × 512) will always be much smaller than the experimental system (4.4 × 1012

unit cells!)1. The essential features are present in the simple model shown here. This

1The illuminated volume in our experiment is D( D
sin θB

)(µ sin θB) = D2µ, where D = 7.5 µm is the
collimating pinhole diameter, µ = 4.2 µm is the absorption length of X-rays in Cu3Au at 7 keV.
Dividing this volume by the lattice cell volume (3.711 Å)3, we find that our illuminated volume
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slow dynamics of speckle after a quench from the disordered equilibrium phase to the

ordered phase will be present in any model and depends only on the presence of an

extended domain structure which persists over an extended time. For example, we

expects the dynamics of speckle in model B to be even slower than model A, because

of the smaller growth exponent in model B (1/3 instead of 1/2).

More theoretical work remains to be done to make some prediction on the time

correlation function. Due to long time instabilities in the beamline at X25, these

experiments should be performed again at the new third generation sources like ESRF

and APS in order to study the detailed time dependence of the speckle pattern.

Recently, we have demonstrated that the Troika beamline at ESRF is sufficiently

stable to perform IFS on Fe3Al near its critical point [19]. Because of the small

contrast of the time fluctuations of S(~q, t) in these systems, the increase in coherent

flux should allow one to measure more subtle fluctuations of the structure factor.

corresponds to 4.4× 1012 unit cells.
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Conclusions

We have shown that one can produce a beam of coherent X-rays by spatially fil-

tering an incoherent beam of monochromatic X-rays to dimensions smaller than its

transverse coherence lengths using small pinholes with diameters of a few µm. A

second generation synchrotron radiation source like beamline X-25 at NSLS provides

a sufficient coherent flux to perform coherent X-rays scattering experiments.

When a coherent beam is scattered from a disordered sample, a graininess in the

structure factor is observed, called speckle. The speckle pattern is sensitive to the

exact arrangement of the atoms in the illuminated volume. If the state of disorder

of the sample changes with time, the speckle pattern will fluctuate in time. An

analysis of the time correlations of the scattered light at a given wavevector allows

a direct measurement of the dynamics of the system, in and out of thermodynamic

equilibrium.

This thesis is the first study of the ordering kinetics of first order phase transitions

in a classical binary alloy with a non-conserved order parameter, using coherent hard

X-rays. One of the important contributions of this thesis has been to develop tech-

niques to measure the speckle patterns produced by coherent X-ray scattered from a

binary alloy with a two-dimensional CCD detector, as well as techniques to analyze

these patterns.

In Chapter 3, the development of techniques based on statistical estimators like

the mean, variance and spatial correlation function has been essential in our under-

standing of the noise, quantum efficiency, and spatial resolution of the CCD. The use

of spatial correlation functions to measure the resolution of the CCD is an original

118
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contribution [37]. The spatial autocorrelation function of the signal generated by a

spatially uniform incident beam is broadened by the spread of the detected electrons

to several nearest neighbor pixels. By assuming an identical response for each de-

tected photon, the resolution function can be extracted from the measured correlation

function. The spatial extent of the resolution function reduces the spatial or temporal

variance of the signal when compared to the variance due to Poisson noise. This effect

must be accounted for in the calculation of the quantum efficiency. These techniques

can be applied to any typical one and two-dimensional position-sensitive detectors,

and can also characterize non-linear detectors.

Section A.2 also contains central and original derivations, which have been used

throughout the thesis to calculate error bars of various functions of the estimated

average, <V >, and variance, S2
V , of the signal V . We have shown that by combining

standard error analysis with the variances and covariance of <V > and S2
V , one can

approximate the standard deviation of several functions of the estimated mean and

variance f(<V >, S2
V ). We derived, for example, the error on the contrast

√
S2

V /<V >2

and on the ratio S2
V /<V >. This ratio of variance over mean is an important quantity

which can be used to calibrate a detector, or to determine whether or not the observed

time fluctuations of the signal are above the fluctuations expected from counting

statistics.

The development of the detector characterization techniques was based on spatial

correlation functions introduced to measure the speckle size of Cu3Au speckle pat-

terns. Using spatial correlation functions, it was shown that this detector has a suffi-

cient spatial resolution to measure speckle patterns of Cu3Au (100). The speckle pat-

tern properties were studied by changing the horizontal transverse coherence length,

and the illuminated sample area. The speckle size was measured by the width at

small displacements of the spatial crosscorrelation function of two subsequent scans

of the CCD. The speckle width is reduced when the illuminated sample area is in-

creased, until the speckle size is comparable to the resolution of the CCD. Then the

widths become resolution limited. Increasing the horizontal coherence length reduced
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the speckle size horizontally. Because the CCD resolution is anisotropic and broader

than one pixel, and because the beam is partially coherent, the effect of different

optical conditions requires subtle analysis. A theoretical model based on the autocor-

relation function of the Fraunhofer diffraction pattern of the pinhole convolved with

the detector resolution is in good agreement with the observations. Some difference is

seen between the model and the data for the smallest pinhole D = 3.5 µm. Perhaps

this indicates that the illuminated sample area is larger than the pinhole area, since

the sample is placed at the limit of the near-field diffraction of the pinhole. Note

that these effects should be easier to resolve if the angular resolution of the detector

is improved, whether by choosing a detector with finer spatial resolution, or placing

the detector further away.

The contrast of the speckle pattern was also measured by subtracting the expected

Poisson noise contribution from the spatial fluctuations. The contrast is reduced as

expected when the input beam diameter increases, and when the upstream source size

is increased. The measured contrast is smaller than expected. We discussed some of

the possible causes for this difference earlier.

These measurements of the contrast and speckle size are major contributions of

this thesis. It is the first detailed quantitative analysis of X-ray speckle. The mea-

surements on static speckle from Cu3Au agree well with the well known properties

of speckle. Because the CCD detector can measure thousands of independent speck-

les simultaneously, the contrast and autocorrelation functions can be measured quite

accurately. The calculation algorithm are also simple to implement. This work has

some applications in microscopy, like atomic force and electron microscopy. For ex-

ample, it is straightforward to measure the average domain size in an image with the

autocorrelation function.

We measured the time fluctuations of the structure factor for the (100) superlattice

reflection of Cu3Au after a quench from the disordered phase to the ordered phase.

Soon after the quench, speckles appear at fixed positions in reciprocal space. Their

intensities grow like the average scattering from antiphase domains. The overall



121

sharpening of the structure factor and the increase in peak intensity can be measured

by least-squares fits of the whole speckle pattern. The widths and peak intensity of

the Gaussian fits follow power laws, as expected from the coarsening of domains.

The approach we took to study the time fluctuations is to look at the time fluctua-

tions with respect to a time-dependent growing average, provided by two-dimensional

fits. By studying the statistics of the relative fluctuations with respect to the fit, one

can test whether these fluctuations are above counting statistics or not. The inter-

ested reader will find some of our experience gained in analyzing the time fluctuations

in equilibrium and out of equilibrium compiled in section A.4. For the X-25 data, the

time fluctuations on a time scale of one half hour are within the expected fluctuations

due to Poisson noise of the detected photons and incident intensity fluctuations, thus

the speckles are constant over this time scale within fluctuations due to counting

statistics. Intrinsic fluctuations with larger time scales due to the coarsening dynam-

ics cannot easily be separated from fluctuations caused by beamline instabilities at

present.

The amplitude of the time fluctuations of the data is small, and consistent with

theory. As opposed to an IFS experiment performed in thermal equilibrium (see

Fig. 2.13), the relative amplitude of these fluctuations is much smaller than 100 % and

the fluctuation times are long. This makes quantitative analysis particularly difficult

because of the limited count rate and the beamline instabilities. If the amplitude of

these fluctuations had been larger, the time fluctuations would have been more easily

measured. We believe that the small size of the fluctuations is an important property

of the speckle patterns generated by the non-equilibrium growth which produced the

domain structure.

This observation is qualitatively consistent with a numerical simulation of model

A. After the quench, speckles appear at fixed ~q, and their dynamics are slow. This

observation is consistent with the simple picture that the speckle pattern is dominated

by the scattering from large domains which slowly grow at the expense of small

domains. This dynamics makes the small domains disappear, leaving the macroscopic
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domain arrangement over the sample size changing slowly with time (see Fig. 5.19).

Fourier modes representing the domain structure changes only slowly because the

macroscopic domain structure correlates with itself for long times.

The last conclusion of this thesis is that individual speckles remain fixed in recip-

rocal space after the quench. This observation violates simple minded scaling in the

experimental data and the numerical simulation. Although the speckle pattern does

not scale, the overall scattering sharpens as expected for scaling. This persistence

of speckle seems to be a general property of the structure factor of non-equilibrium

growth measured with coherent light, for both conserved and non-conserved order pa-

rameters. These experiments started out as a way to test some of the ideas of Grant

and Roland [36]. There is good reason to believe that these types of measurements

will lead to a deeper understanding of this type of phenomena, but much work still

need to be done. This XIFS work has also generated a lot of interest in the visi-

ble IFS community, and many experiments are underway to study non-equilibrium

phenomena.

To measure the time fluctuations in more detail, longer experiments with higher

incident coherent flux are planned in the future. A factor of 100-1000 in intensity is

accessible by using the new undulator facilities such as the ESRF or the APS. This

increase in flux would allow to reduce the error bars in Fig. 5.17 by a factor of more

than ten, and enables smaller changes of the structure factor to be measured. As

demonstrated recently [19], these beamlines are also more stable in terms of beam

intensity and position. Ideally, one should also look for systems with faster intrinsic

dynamics than Cu3Au, and samples which scatter isotropically1.

Improvements in detecting scheme are also achievable. For example, very low noise

two dimensional gas detectors with nearly unit quantum efficency (a factor 4 larger

than the detector used in this experiment) are under development at the ESRF, and

should be operational within the next year. These detectors allow measurements

1For example, although an Fe3Al sample scatters less that a Cu3Au one due to smaller scattering
contrast, it scatters isotropically in 2Θ|| and 2Θ⊥, making it possible to ensemble average correlation
functions with the same |~q|. This should improve the statistics of the correlation function and allow
for the measurement of the wavevector dependence of the correlation function [89].
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of the time arrival of each photon, and have very low dark noise. Similarly, CCD

performance can be improved by using low noise detectors, with a CCD chip having

a larger depletion layer. A larger depletion layer is found in EEV chips, for example

[90], and this increases the quantum efficiency for hard X-rays. At 7 keV, the EEV

chip has a quantum efficiency of 50 %, which is a factor two better than the chip

used here. Another approach with CCDs is to couple the array optically with an

X-ray sensitive phosphor which greatly enhances the quantum efficency but reduces

the CCD resolution. By placing such a detector a few meters away, the resolution

should be sufficient to resolve speckle patterns. A completely different approach with

CCDs should be used when the count rates are low. For low count rates, it is possible

to detect single photons events. This removes most of the electronic noise in the data,

and in principle allow subpixel spatial resolution!

These measurements are some of the first results using this newly developed scat-

tering technique. As a feasibility experiment, our measurements on Cu3Au were a

success! We demonstrated that the experiment can be performed, and pointed out

some of the major problems encountered on second generation synchrotron sources.

These results have important applications in the design of the next generation of

beamlines optimized to produce coherent X-rays. These measurements are also excit-

ing because they give new insights on the dynamics of phase transitions not available

before. Beside our IFS results, the simple example of coherent X-ray scattering from

an isolated edge dislocation was given in Chapter 2. This proposed experiment is

already feasible with existing sources.

Coherent X-ray scattering will be a powerful technique at the newly commissioned

third generation synchrotron sources, and many group are developing strong scientific

programs in this field. Because the coherence lengths of synchrotron radiation are on

the order of the microstructure of many materials, coherent X-rays will be a tool of

choice to investigate disorder in these materials.
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A.1 Some useful probability distributions
A Poisson distribution is discrete. The probability of measuring n events is

P (n) =
µne−µ

n!
. (A.1)

The mean and the variance are µ. Higher central moments are (x− µ)3 = µ, and
(x− µ)4 = 3µ2 + µ.

A Gaussian distribution is continuous, with probability density

ρ(x) =
1√
2πσ

exp[
(x− µ)2

2σ2
]. (A.2)

The mean is µ and the variance is σ2. Higher moments are (x− µ)3 = 0 and
(x− µ)4 = 3σ4.

A chi-square random variable is given by

χ2 =
M∑

i=1

(yi − yi)
2. (A.3)

It is the sum of the squares of M Gaussian random variable yi, with average yi and
standard deviation σ. The probability density of this random variable is

ρ(χ2) = (
√

2σ)−M(χ2)M/2−1 exp(− χ2

2σ2
)/Γ(M/2). (A.4)

The average is Mσ2 and the variance 2Mσ4, with a contrast
√

2/M .
The chi-square distribution is the probability distribution followed by speckle

statistics for M=2. For speckle, the scattered intensity I = Re{E}2 + Im{E}2,
i.e. the sum of the squares of the real and imaginary part of the Gaussian scattered
electric field E. Here the electric field is linearly polarized. For M = 2, Eq. A.4 is an
exponential with average I = 2σ2 and standard deviation σI = 2σ2. The fluctuations
of the scattered intensity are as large as the mean!

When a detector averages several speckles because its area integrates over many
speckles, Eq. A.4 is also the distribution which approximately describes the scattered
intensity I. The probability density of the scattered intensity is

p(I) = (
Ns

I
)NsINs−1 exp(−NsI

I
)/Γ(Ns), (A.5)
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where Ns is the number of independent speckle in the detector area, or the ratio of
the detector area over the speckle area introduced in Eq. 5.3, and I is the average
intensity. This is known as the gamma probability density [39]. For Ns = 1, it reduces
to the exponential distribution we derived earlier in Eq. 2.34. Its average is I and its

variance is I
2

Ns
, so that the contrast σ

I
= 1√

Ns
.

A.2 Error analysis

One often wants to evaluate the uncertainty in the estimated average <x> and vari-
ance S2 of a random variable X, with theoretical mean µ and variance σ2. Assuming
that the probability density ρ(x) of the random variable X is stationary, the true
mean and variance of ρ(x) are defined by

x =
∫ ∞

−∞
xρ(x)dx = µ, and (A.6)

(x− µ)2 =
∫ ∞

−∞
(x− µ)2ρ(x)dx = σ2, (A.7)

with
∫∞
−∞ ρ(x)dx = 1. The discussion below is limited to distributions with finite µ

and σ2. The statistical estimators of the mean <x> and variance S2 are defined by

<x> =
1

N

N∑

i=1

xi, and (A.8)

S2 =
1

N − 1

N∑

i=1

(xi −<x>)2, (A.9)

where xi is a measured outcome of the random variable X, chosen from the same
probability distribution ρ(x). The estimators <x> and S2 are unbiased estimators
of the mean and variance and on average are equal to µ and σ2. The uncertainties
in these statistical estimators depend on the number of random events observed, N .
For small N , the fluctuations in the measured or estimated value are comparable to
the expected value. Therefore, its dependence on N must be well characterized.

The uncertainty on the mean is well known and goes as
√

σ2/N [64]. For a Gaussian

distribution, the uncertainty on the variance is
√

2/(N − 1)σ2 [64]. In section A.2.1,
we derive a general relation for the uncertainty of the estimated variance, and apply it
to the Poisson distribution. In error propagation analysis, one may want to evaluate
the uncertainty in a function of the mean and variance f(<x>, S2) as required in
section 3.0.3. To evaluate the error in f , one uses the uncertainty in <x> and S2,
and needs to know the covariance between <x> and S2. A general expression for
this covariance is derived in section A.2.2, and a derivation for Eq. (3.7) is shown in
section A.2.3 and A.2.4.
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A.2.1 Uncertainty in the measured mean and variance
It is important to note that <x> and S2 are themselves random variables since they
are functions of several random variables. A useful estimator of the uncertainty of
these new random variables is their standard deviations σ<x> and σS2 defined in Ref.
[64] by

σ2
<x> = <x>2 −<x>2, and (A.10)

σ2
S2 = S4 − S22

, (A.11)

where the horizontal line refers to an average over the joint probability distribution
of the random variable <x>, a function of N random variables xi, i.e. <x> ≡∫
<x>(x1, ..., xN)ρ(x1, ..., xN)dx1...dxN . σ<x> and σS2 are the standard deviations of

the probability densities of <x> and S2. The N dependence in Eq. (A.10-A.11) is
not explicitly written in order to keep the notation simple. From Eq. (A.8), recalling
that xi = µ, it is easy to show that <x> = µ. In order to simplify the algebra below,
we introduce a new variable yi = xi − µ, so that yi = 0 and y2

i = σ2. One can now
rewrite Eq. (A.10) , using Eq. (A.8) and square it to get

σ2
<x> =

1

N2

N∑

i,j=1

yiyj. (A.12)

Assuming that each yi is independent, i.e.

yiyj = δijσ
2, (A.13)

where δij is a Kronecker delta, and replacing Eq. (A.13) in Eq. (A.12), one gets

σ2
<x> =

σ2

N
, (A.14)

which is a well known result valid for any N , and any probability distribution with
finite mean and variance, given that no correlation exists between the xi’s. This result
states that the probability density of <x>, ρ(<x>), is narrower than ρ(x) by a factor√

1
N

.

In Eq. (A.11), the S2 term can be evaluated by substituting xi by yi and replacing
Eq. (A.8) into Eq. (A.9). Then, one finds

S2 =
1

N − 1




N∑

i=1

y2
i −

1

N

N∑

i,j=1

yiyj


 . (A.15)

Taking averages on both sides of Eq. (A.15), and evaluating the sums with Eq. (A.13),
one finds S2 = σ2, as stated before. The N −1 denominator comes from the fact that
there is one less degree of freedom used to evaluate the mean. Taking the square of
Eq. (A.15), and taking averages on the right and left hand side of the equation, one
finds

S4 =
1

(N − 1)2




N∑

i,j=1

y2
i y

2
j −

2

N

N∑

i,j,k=1

y2
i yjyk +

1

N2

N∑

i,j,k,l=1

yiyjykyl


 . (A.16)
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Evaluating the averages recalling that yi = 0 and yiyj = δijσ
2, one finds

y2
i y

2
j =

{
y4, for i = j, N terms,
σ4, for i 6= j, N(N − 1) terms,

(A.17)

y2
i yjyk =





y4, for i = j = k, N terms,
σ4, for i 6= j = k, N(N − 1) terms,
0, otherwise,

(A.18)

yiyjykyl =





y4, for i = j = k = l, N terms,
σ4, for i = j 6= k = l, 3N(N − 1) terms,
0, otherwise.

(A.19)

Here, the nth order central moment is defined by yn ≡ ∫
ynρ(y)dy. Using Eq. (A.17-

A.19) to evaluate the sums in Eq. (A.16), and replacing Eq. (A.16) into Eq. (A.11),
one finds

σ2
S2 =

y4(N − 1) + σ4(3−N)

N(N − 1)
. (A.20)

This result depends on the fourth order central moment of the distribution, y4, and
the standard deviation, σ. For a Gaussian distribution, (see section A.1) y4 = 3σ4

and Eq. (A.20) gives as expected σ2
S2 = 2

N−1
σ4. For a Poisson distribution on the

other hand, y4 = 3µ2 + µ which yields

σ2
S2 =

2

N − 1
µ2 +

µ

N
. (A.21)

Note that for µ < 1, the second term is an important correction and a Gaussian
approximation would underestimate the error on the variance. For large means, Eq.
(A.21) becomes identical to the error for a Gaussian with variance equal to the mean,
as expected since the Poisson distribution crosses over to such a Gaussian for large
means. Finally, note that since in general ρ(S2) is not Gaussian, one cannot easily
quantify the confidence limits of S2, but can nevertheless calculate its variance.

A.2.2 Correlation of the sample mean and variance
One might think that there is no correlation between the estimator of the mean <x>
and the estimator of the variance S2. The independence of the estimated mean and
variance is discussed in several statistical books for Gaussian distributions [73, 64].
The measure of correlation between the measured mean and variance, the covariance,
is defined as

cov(<x>, S2) = (<x>− µ)(S2 − σ2) = <y>S2

=
1

N(N − 1)




N∑

i,j=1

yiy2
j −

1

N

N∑

i,j,k=1

yiyjyk


 , (A.22)

since <y>σ2 = 0. Evaluating the averages as in Eq. (A.17-A.19), one finds

yiyjyk =

{
y3, for i = j = k, N terms,
0, otherwise.

(A.23)
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The same results holds for yiy2
j . Replacing those in Eq. (A.22) and simplifying, one

gets

cov(<x>, S2) =
y3

N
, (A.24)

where y3 is the 3rd order central moment of the distribution. Thus, the covariance
depends on N , and on how symmetric with respect to the mean is the probability
distributed. The estimated mean and variance are independent only as N goes to
infinity, or if y3 = 0. For a Gaussian distribution, the covariance is zero because
odd powers of the central moments are zero. For a Poisson distribution, y3 = µ (see
Appendix A.1) and

cov(<x>, S2) =
µ

N
. (A.25)

A.2.3 Evaluation of the error on a function of S2 and <x>
From standard error propagation analysis [73], one can readily calculate the uncer-
tainty of a function f(<x>, S2) = S2

<x>
. It is given by

σ2
f

f 2
≈ σ2

S2

S22 +
σ2

<x>

<x>2 −
2cov(S2, <x>)

<x>S2
, (A.26)

where the terms on the right hand side have been calculated above. The approximate
sign comes from the fact that σf is derived from a first order Taylor expansion of f
around its average. Replacing the uncertainties and covariance derived previously for
a Poisson distributed random variable X in Eq. (A.14) ,(A.21), (A.25), one finds

σ2
f

f 2
≈ 2

N − 1
. (A.27)

The result is independent of the mean µ. By averaging N independent measurements,
one can measure f accurately. On the other hand, if the signal is Gaussian distributed,

the covariance term in Eq. (A.26) would be zero, and one gets
σ2

f

f2 ≈ 2
N−1

+ σ2

µ2N
.

Depending on the mean and variance of the distribution, the second term may be
important.

A.2.4 Including electronic noise for an X-ray detector
For an X-ray detector, Eq. (A.27) is not sufficient to estimate the errors on k, defined
in Eq. (3.5), because for weak signals, the electronic noise will contribute significantly
to σk. Ve, the dark electronic noise, increases the relative error on the time averaged
mean <V >t and variance S2

t,V when the contribution from the detected photons
approaches zero. To find σk, the standard deviation of k, we can simply replace in
Eq. (A.26) <x> by <V >t, and S2 by S2

t,V −σ2
V e, where σ2

V e is the theoretical variance
of the electronic noise probability distribution. Then the first term of Eq. (A.26) can
be rewritten as

σ2
S2

t,V −σ2
V e

(S2
t,V − σ2

Ve
)2

=
σ2

k2S2
nd

+ σ2
S2

V e

(S2
t,V − σ2

Ve
)2
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=
2

N − 1
+

1

Nnd

+
2σ4

V e

(N − 1)(S2
t,V − σ2

Ve
)2

. (A.28)

To obtain this relationship, we used the equation σ2
S2

t,V −σ2
V e

= σ2
S2

t,V
and Eq. (3.3), and

assuming that Ve follows Gaussian statistics. The first two terms are the detected
photon contributions which are included in Eq. (A.27), and the last term is due to an
error on the evaluation of the dark variance. Next, we can evaluate the second term
of Eq. (A.26) using Eq. (3.3),

σ2
<V >t

<V >t
2 =

k2σ2
nd

+ σ2
Ve

N<V >t
2 +

σ2
Ve

Nd<V >t
2

=
1

Nnd

+
σ2

Ve

<V >t
2

(
1

N
+

1

Nd

)
, (A.29)

where nd and <V >t are the hypothesized means of the number of detected photons
and of the detector signal, while σ2

nd
and σ2

Ve
are the theoretical variances of nd and

of the dark electronic noise. The first term in this equation comes from the statistics
of the detected photons and is already included in Eq. (A.27). The second term
explains the increased uncertainty in k for small signals due to the electronic noise.
The third term is due to the statistical error in the measurement of the dark pattern
subtracted from V , where Nd scans are averaged without X-rays. To minimize the
error, one should choose Nd = N . Finally, the last term in Eq. (A.26) is unchanged
from the Poisson case because the dark signal and the detected photon signal are not
correlated. Collecting terms, we find

σ2
k

k2
≈ 2

N − 1


1 +

σ4
V e

(S2
t,V − σ2

Ve
)2


 +

σ2
Ve

<V >t
2

(
1

N
+

1

Nd

)
. (A.30)

It is therefore easier to measure k when <V >2
t and S2

t,V are much larger than σ2
Ve

.

To evaluate σk for a given experiment, one would replace σ2
Ve

, S2
t,V and <V >t by the

experimentally measured values S2
t,Ve

, S2
t,V and <V >t.

Note that the error analysis approach developed above can be extended to other
problems, such as the evaluation of the error on the measured contrast in optics if
the signal is not Gaussian distributed. It is also useful to estimate the errors in our
coherent X-ray experiments.

For example, the error on the measured contrast for the time-averaged scattered
intensity in section 2.6.2 is derived with the same technique. In section 2.6.2, the
contrast is defined by

Ct =

√
S2

<x>
. (A.31)

Neglecting the term for the correlation between the estimated mean and variance, it
is easy to show that the error on the contrast

σCt

Ct
≈

√√√√ σ2
S2

4S22 +
σ2

<x>

<x>2 ≈
√√√√ 1

2(N − 1)
+

Ct2

N
. (A.32)
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Here, the error on the estimated variance σS2 was approximated by the error for
Gaussian statistics.

A.3 Derivation of the autocorrelation function for a Gaus-

sian
If one assumes that the structure factor is a smoothly varying function of ~q, one
can understand quantitatively the ~q dependence of the crosscorrelation function (see
Eq. 5.5) which is caused by the presence of antiphase domains.

Let us study the autocorrelation function by choosing dt = 0 in Eq. 5.5. For the
two dimensional Gaussian function defined in Eq. 5.11, one can show that its spatial
autocorrelation function calculated by a two dimensional integral over a rectangle in
reciprocal space with edges L⊥ × L‖ is

<v∗(~q, t)v∗(~q + ~dq, t)>~q =
πσ⊥σ‖I2

max

4L⊥L‖
exp(

−dq2
⊥

4σ2
⊥

) exp(
−dq2

‖
4σ2

‖
)

[
erf(

L‖ + dq‖
2σ‖

) + erf(
L‖ − dq‖

2σ‖
)

]

×
[
erf(

L⊥ + dq⊥
2σ⊥

) + erf(
L⊥ − dq⊥

2σ⊥
)

]
, (A.33)

where Imax is the peak intensity, and σ⊥ is the Gaussian width along 2θ⊥. The
error functions are present because of the finite size of L⊥ and L‖. For a small
displacement with |dq⊥| << L⊥ and |dq‖| << L‖, the autocorrelation in Eq. A.33 is

also approximately a two dimensional Gaussian with width along 2θ⊥ equal to
√

2σ⊥.
In Fig. 5.5–5.7, the autocorrelation is normalized by the square of the spatial

average. For a two dimensional Gaussian, the spatial average of the linearized signal
is

<v∗>~q =
2πσ⊥σ‖Imax

L⊥L‖
erf(

L⊥
2
√

2σ⊥
)erf(

L‖
2
√

2σ‖
). (A.34)

Thus the normalized autocorrelation function for small displacement |dq⊥| << L⊥
and |dq‖| << L‖ is approximately

<v∗(~q, t)v∗(~q + ~dq, t)>~q

<v∗>2
~q

∝ L⊥L‖
16πσ⊥σ‖

exp(
−dq2

⊥
4σ2

⊥
) exp(

−dq2
‖

4σ2
‖

). (A.35)

Note that the maximum of the normalized autocorrelation is inversely proportional
to the product of the widths σ⊥σ‖.

A.4 Tools for time fluctuations analysis
Here are some of the tools that might be useful for simple analysis of time fluctuations
for XIFS in systems in thermal equilibrium and out of equilibrium. In equilibrium, to
make sure that the time fluctuations are larger than the fluctuations due to counting
statistics and electronic noise, one can measure the fluctuations of the structure factor



A.4 Tools for time fluctuations analysis 131

with respect to its long time average, and compare these fluctuations to those caused
by Poisson noise. We define the ratio of these two quantities as

R(~q, t) =
S2

t,S(~q)

<S(~q, t)>t

, (A.36)

where S2
t,S is the variance and <S(~q, t)>t the time average of the structure factor

S(~q, t) measured from a sequence of N measurements. In deriving Eq. A.36, the
detector is assumed to have unit quantum efficiency and a spatial resolution much
smaller that the speckle size. With such a detector, the expected variance from
Poisson noise is simply equal to the time average <S(~q, t)>t. Note that we have
already derived this equation earlier since this is simply the equation for k in Eq. 3.5
for a detector without electronic noise! If the fluctuations are only caused by Poisson
noise, R = 1, and its error bars are given by Eq. A.27. A ratio greater than unity
implies that the fluctuations are significantly larger than fluctuations due to counting
statistics.

In an intensity fluctuation spectroscopy experiment, one wants to know what is
the standard deviation of the structure factor corrected for trivial fluctuations due to
counting statistics1. This standard deviation of S(~q, t), σt,S is simply

σt,S(~q) =
√

(R(~q)− 1)<S(~q, t)>t. (A.37)

Therefore, the relative fluctuation of the structure factor is simply the ratio of Eq. A.37
over the time average <S(~q, t)>t equal to

σt,S(~q)

<S(~q, t)>t

=

√√√√ R(~q)− 1

<S(~q, t)>t

. (A.38)

If the ratio R(~q) = 1.1 and the time average of the structure factor is 10 counts,
then the relative rms fluctuation of the signal with respect to its time average is√

0.1/10 = 10 %.

Out of equilibrium, since the time average of S(~q, t) changes in time, Eq. A.36
must be modified to take this into account. We have found it useful to measure the
fluctuations of the speckle pattern with respect to two dimensional least-squares fit
of the whole speckle pattern. A natural variable to study fluctuations is

η(~q, t) =
S(~q, t)

Sf (~q, t)
− 1. (A.39)

Here η is the relative difference between the structure factor S(~q, t), and the fit Sf (~q, t).
Assuming for simplicity that the detector is ideal, the expected standard deviation of
η is

ση =

√
S(~q, t

Sf (~q, t)
. (A.40)

1An excellent introduction on the subject can be found in Chapter 9 of Goodman [39].
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To calculate whether the fluctuations of η(~q, t) are above its expected error bars, we
define the ratio

Rη(~q) =
S2

t,η(~q)

<σ2
η(~q, t)>t

. (A.41)

Here the variance of η, S2
t,η, and the time average of the calculated variance σ2

η,
<σ2

η(~q, t)>t, can be calculated from N subsequent measurements. The ratio Rη(~q, t)
is a two dimensional array in our measurements.
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[37] E. Dufresne, R. Brüning, M. Sutton, G.B Stephenson, and B. Rodricks. A
statistical technique for characterizing X-ray position-sensitive detectors. Nucl.
Inst. and Meth. A, 364:380–393, 1995.

[38] M. Born and E. Wolf. Principles of Optics. Pergamon, Oxford, 1970.

[39] J.W. Goodman. Statistical Optics. John Wiley & Sons, Inc., New York, first
edition, 1985.

[40] Giorgio Margaritondo. Introduction to Synchrotron Radiation. Oxford University
Press, New York, 1988.

[41] A. G. Michette and C.J. Buckley, editors. X-Ray Science and technology. Insti-
tute of Physics Publishing, Bristol and Philadelphia, 1993.

[42] C. Kittel. Introduction to Solid State Physics. John Wiley & Sons, New York,
sixth edition, 1986.

[43] D. Vaughan. X-ray data booklet. Technical Information Department, Lawrence
Berkeley Laboratory, Berkeley, California 94720, 1986.



136 BIBLIOGRAPHY

[44] S. Brauer, G.B. Stephenson, and M. Sutton. Perfect crystals in the asymmetric
Bragg geometry as optical elements for coherent X-ray beams. J. Synch. Rad.,
2:163–173, 1995.

[45] X-M. Zhu, H. Zabel, I.K. Robinson, E. Vlieg, J.A. Dura, and C.P. Flynn. Surface-
induced heterophase fluctuation. Phys. Rev. Lett., 65:2692, 1990.

[46] H. Dosch, L. Mailänder, H. Reichert, and J. Peisl. Long-range order near the
Cu3Au(001) surface by evanescent X-ray scattering. Phys. Rev. B, 43:13172–
13186, 1991.

[47] H. Reichert, P.J. Eng, H. Dosch, and I.K. Robinson. Thermodynamics of surface
segregation profiles at Cu3Au(001) resolved by X-ray scattering. Phys. Rev. Lett.,
74:2006, 1995.

[48] B.D. Butler and J.B. Cohen. The structure of Cu3Au above the critical temper-
ature. J. Appl. Phys., 65:2214, 1989.

[49] P.N. Pusey. Statistical properties of scattered radiation. In H.Z. Cummins and
E.R. Pike, editors, Photon Correlation Spectroscopy and Velocimetry, page 45.
Plenum, New York, 1977.

[50] L.E. Berman. Preserving the high source brightness with X-ray beam line optics.
Rev. Sci. Instrum., 66:2041–2047, 1995.
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